Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy D. Kim is active.

Publication


Featured researches published by Nancy D. Kim.


Nature Medicine | 2008

The Lysophosphatidic Acid Receptor LPA1 Links Pulmonary Fibrosis to Lung Injury by Mediating Fibroblast Recruitment and Vascular Leak

Andrew M. Tager; Peter LaCamera; Barry S. Shea; Gabriele S. V. Campanella; Moisés Selman; Zhenwen Zhao; Vasiliy V. Polosukhin; John C. Wain; Banu A Karimi-Shah; Nancy D. Kim; William K. Hart; Annie Pardo; Timothy S. Blackwell; Yan Xu; Jerold Chun; Andrew D. Luster

Aberrant wound-healing responses to injury have been implicated in the development of pulmonary fibrosis, but the mediators directing these pathologic responses have yet to be fully identified. We show that lysophosphatidic acid levels increase in bronchoalveolar lavage fluid following lung injury in the bleomycin model of pulmonary fibrosis, and that mice lacking one of its receptors, LPA1, are markedly protected from fibrosis and mortality in this model. The absence of LPA1 led to reduced fibroblast recruitment and vascular leak, two responses that may be excessive when injury leads to fibrosis rather than to repair, whereas leukocyte recruitment was preserved during the first week after injury. In persons with idiopathic pulmonary fibrosis, lysophosphatidic acid levels in bronchoalveolar lavage fluid were also increased, and inhibition of LPA1 markedly reduced fibroblast responses to the chemotactic activity of this fluid. LPA1 therefore represents a new therapeutic target for diseases in which aberrant responses to injury contribute to fibrosis, such as idiopathic pulmonary fibrosis.


Trends in Immunology | 2011

Neutrophils cascading their way to inflammation.

Christian D. Sadik; Nancy D. Kim; Andrew D. Luster

Neutrophils are pivotal effector cells of innate immunity. Their recruitment into peripheral tissues is indispensable for host defense. Given their destructive potential, neutrophil entry into tissue must be tightly regulated in vivo to avoid damage to the host. An array of chemically diverse chemoattractants is active on neutrophils and participates in recruitment. Neutrophil chemoattractants were thought redundant in the control of neutrophil recruitment into peripheral tissue, based on their often indistinguishable effects on neutrophils in vitro and their frequently overlapping patterns of expression at inflammatory sites in vivo. Recent data, however, suggest that neutrophil chemoattractants have unique functions in the recruitment of neutrophils into inflammatory sites in vivo, dictated by their distinct patterns of temporal and spatial expression.


Immunity | 2010

Lipid-Cytokine-Chemokine Cascade Drives Neutrophil Recruitment in a Murine Model of Inflammatory Arthritis

Richard C. Chou; Nancy D. Kim; Christian D. Sadik; Edward Seung; Yinan Lan; Michael H. Byrne; Bodduluri Haribabu; Yoichiro Iwakura; Andrew D. Luster

A large and diverse array of chemoattractants control leukocyte trafficking, but how these apparently redundant signals collaborate in vivo is still largely unknown. We previously demonstrated an absolute requirement for the lipid chemoattractant leukotriene B(4) (LTB(4)) and its receptor BLT1 for neutrophil recruitment into the joint in autoantibody-induced arthritis. We now demonstrate that BLT1 is required for neutrophils to deliver IL-1 into the joint to initiate arthritis. IL-1-expressing neutrophils amplify arthritis through the production of neutrophil-active chemokines from synovial tissue cells. CCR1 and CXCR2, two neutrophil chemokine receptors, operate nonredundantly to sequentially control the later phase of neutrophil recruitment into the joint and mediate all neutrophil chemokine activity in the model. Thus, we have uncovered a complex sequential relationship involving unique contributions from the lipid mediator LTB(4), the cytokine IL-1, and CCR1 and CXCR2 chemokine ligands that are all absolutely required for effective neutrophil recruitment into the joint.


Journal of Biological Chemistry | 1996

Individual RNA Recognition Motifs of TIA-1 and TIAR Have Different RNA Binding Specificities

Laura M. Dember; Nancy D. Kim; Karen-Qianye Liu; Paul Anderson

TIA-1 and TIAR are two closely related RNA recognition motif (RRM) proteins which possess three RRM-type RNA binding domains (RRMs 1, 2, and 3). Although both proteins have been implicated as effectors of apoptotic cell death, the specific functions of TIA-1 and TIAR are not known. We have performed in vitro selection/amplification from pools of random RNA sequences to identify RNAs to which TIA-1 and TIAR bind with high affinity. Both proteins selected RNAs containing one or several short stretches of uridylate residues suggesting that the two proteins have similar RNA binding specificities. Replacement of the uridylate stretch with an equal number of cytidine residues eliminates the protein-RNA interaction. Mutational analysis indicates that, for both TIA-1 and TIAR, it is the second RNA binding domain (RRM 2) which mediates the specific binding to uridylate-rich RNAs. Although RRM 2 is both necessary and sufficient for this interaction, the affinity for the selected RNA (as determined by filter binding assays) does increase when the second domain of TIAR is expressed together with the first and third domains (K = 2 × 10M) rather than alone (K = 5 × 10M). Although RRM 3 (of either TIA-1 or TIAR) does not interact with the uridylate-rich sequences selected by the full-length proteins, it is a bona fide RNA binding domain capable of affinity-precipitating a population of cellular RNAs ranging in size from 0.5 to 5 kilobases. In contrast, RRM 1 does not affinity-precipitate cellular RNA. The inability of RRM 1 to interact with RNA may be due to the presence of negatively charged amino acids within the RNP 1 octamer.


PLOS ONE | 2011

From SOMAmer-Based Biomarker Discovery to Diagnostic and Clinical Applications: A SOMAmer-Based, Streamlined Multiplex Proteomic Assay

Stephan Kraemer; Jonathan D. Vaught; Christopher Bock; Larry Gold; Evaldas Katilius; Tracy R. Keeney; Nancy D. Kim; Nicholas A. Saccomano; Sheri K. Wilcox; Dom Zichi; Glenn Sanders

Recently, we reported a SOMAmer-based, highly multiplexed assay for the purpose of biomarker identification. To enable seamless transition from highly multiplexed biomarker discovery assays to a format suitable and convenient for diagnostic and life-science applications, we developed a streamlined, plate-based version of the assay. The plate-based version of the assay is robust, sensitive (sub-picomolar), rapid, can be highly multiplexed (upwards of 60 analytes), and fully automated. We demonstrate that quantification by microarray-based hybridization, Luminex bead-based methods, and qPCR are each compatible with our platform, further expanding the breadth of proteomic applications for a wide user community.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling

Christian D. Sadik; Nancy D. Kim; Yoichiro Iwakura; Andrew D. Luster

Neutrophil recruitment into the joint is a hallmark of inflammatory arthritides, including rheumatoid arthritis (RA). In a mouse model of autoantibody-induced inflammatory arthritis, neutrophils infiltrate the joint via multiple chemoattractant receptors, including the leukotriene B4 (LTB4) receptor BLT1 and the chemokine receptors CCR1 and CXCR2. Once in the joint, neutrophils perpetuate their own recruitment by releasing LTB4 and IL-1β, presumably after activation by immune complexes deposited on joint structures. Two pathways by which immune complexes may activate neutrophils include complement fixation, resulting in the generation of C5a, and direct engagement of Fcγ receptors (FcγRs). Previous investigations showed that this model of autoantibody-induced arthritis requires the C5a receptor C5aR and FcγRs, but the simultaneous necessity for both pathways was not understood. Here we show that C5aR and FcγRs work in sequence to initiate and sustain neutrophil recruitment in vivo. Specifically, C5aR activation of neutrophils is required for LTB4 release and early neutrophil recruitment into the joint, whereas FcγR engagement upon neutrophils induces IL-1β release and subsequent neutrophil-active chemokine production, ensuring continued inflammation. These findings support the concept that immune complex-mediated leukocyte activation is not composed of overlapping and redundant pathways, but that each element serves a distinct and critical function in vivo, culminating in tissue inflammation.


The Scientific World Journal | 2007

Regulation of Immune Cells by Eicosanoid Receptors

Nancy D. Kim; Andrew D. Luster

Eicosanoids are potent, bioactive, lipid mediators that regulate important components of the immune response, including defense against infection, ischemia, and injury, as well as instigating and perpetuating autoimmune and inflammatory conditions. Although these lipids have numerous effects on diverse cell types and organs, a greater understanding of their specific effects on key players of the immune system has been gained in recent years through the characterization of individual eicosanoid receptors, the identification and development of specific receptor agonists and inhibitors, and the generation of mice genetically deficient in various eicosanoid receptors. In this review, we will focus on the receptors for prostaglandin D2, DP1 and DP2/CRTH2; the receptors for leukotriene B4, BLT1 and BLT2; and the receptors for the cysteinyl leukotrienes, CysLT1 and CysLT2, by examining their specific effects on leukocyte subpopulations, and how they may act in concert towards the development of immune and inflammatory responses.


Trends in Immunology | 2015

The role of tissue resident cells in neutrophil recruitment.

Nancy D. Kim; Andrew D. Luster

Neutrophils are first responders of the immune system, rapidly migrating into affected tissues in response to injury or infection. To effectively call in this first line of defense, strategically placed cells within the vasculature and tissue respond to noxious stimuli by sending out coordinated signals that recruit neutrophils. Regulation of organ-specific neutrophil entry occurs at two levels. First, the vasculature supplying the organ provides cues for neutrophil egress out of the bloodstream in a manner dependent upon its unique cellular composition and architectural features. Second, resident immune cells and stromal cells within the organ send coordinated signals that guide neutrophils to their final destination. Here, we review recent findings that highlight the importance of these tissue-specific responses in the regulation of neutrophil recruitment and the initiation and resolution of inflammation.


Annals of the Rheumatic Diseases | 2017

An expanded population of pathogenic regulatory T cells in giant cell arteritis is abrogated by IL-6 blockade therapy

Chie Miyabe; Yoshishige Miyabe; Klemen Strle; Nancy D. Kim; John H. Stone; Andrew D. Luster; Sebastian Unizony

Objectives Randomised-controlled trials have recently proven the efficacy of the interleukin (IL)-6 receptor antagonist tocilizumab (TCZ) in giant cell arteritis (GCA). However, the mechanism of action of IL-6 blockade in this disease is unknown. Moreover, the role of regulatory T (Treg) cells in the pathogenesis of GCA remains underexplored. Given the plasticity of Tregs and the importance of IL-6 in their biology, we hypothesised that TCZ might modulate the Treg response in GCA. We therefore characterised the Treg compartment of patients with GCA treated with TCZ. Methods We classified 41 patients with GCA into three groups: active disease (aGCA, n=11), disease remission on corticosteroids (rGCA-CS, n=19) and disease remission on TCZ (rGCA-TCZ, n=11). Healthy controls (HCs) were included for comparison. We determined the frequency, phenotype and function of peripheral blood Tregs. Results Patients with aGCA demonstrated a hypoproliferating Treg compartment enriched in IL-17-secreting Tregs (IL-17+Tregs). Tregs in patients with aGCA disproportionally expressed a hypofunctional isoform of Foxp3 that lacks exon 2 (Foxp3Δ2). Foxp3Δ2-expressing Tregs coexpressed CD161, a marker commonly associated with the Th17 linage, significantly more often than full-length Foxp3-expressing Tregs. Compared with those of HCs, GCA-derived Tregs demonstrated impaired suppressor capacity. Treatment with TCZ, in contrast to CS therapy, corrected the Treg abnormalities observed in aGCA. In addition, TCZ treatment increased the numbers of activated Tregs (CD45RA−Foxp3high) and the Treg expression of markers of trafficking (CCR4) and terminal differentiation (CTLA-4). Conclusions TCZ may exert its therapeutic effects in GCA by increasing the proliferation and activation of Tregs, and by reverting the pathogenic Treg phenotype seen during active disease.


Journal of Immunology | 2014

The transcriptional repressor BLIMP1 curbs host defenses by suppressing expression of the chemokine CCL8

Martina Severa; Sabina A. Islam; Stephen N. Waggoner; Zhaozhao Jiang; Nancy D. Kim; Glennice Bowen Ryan; Evelyn A. Kurt-Jones; Israel F. Charo; Daniel R. Caffrey; Victor L. Boyartchuk; Andrew D. Luster; Katherine A. Fitzgerald

The transcriptional repressor B lymphocyte–induced maturation protein 1 (BLIMP1) is a master regulator of B and T cell differentiation. To examine the role of BLIMP1 in innate immunity, we used a conditional knockout (CKO) of Blimp1 in myeloid cells and found that Blimp1 CKO mice were protected from lethal infection induced by Listeria monocytogenes. Transcriptome analysis of Blimp1 CKO macrophages identified the murine chemokine (C-C motif) ligand 8, CCL8, as a direct target of Blimp1-mediated transcriptional repression in these cells. BLIMP1-deficient macrophages expressed elevated levels of Ccl8, and consequently Blimp1 CKO mice had higher levels of circulating CCL8, resulting in increased neutrophils in the peripheral blood, promoting a more aggressive antibacterial response. Mice lacking the Ccl8 gene were more susceptible to L. monocytogenes infection than were wild-type mice. Although CCL8 failed to recruit neutrophils directly, it was chemotactic for γ/δ T cells, and CCL8-responsive γ/δ T cells were enriched for IL-17F. Finally, CCL8-mediated enhanced clearance of L. monocytogenes was dependent on γ/δ T cells. Collectively, these data reveal an important role for BLIMP1 in modulating host defenses by suppressing expression of the chemokine CCL8.

Collaboration


Dive into the Nancy D. Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry Gold

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Hicke

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Bruce E. Eaton

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge