Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stella S. Taddeo is active.

Publication


Featured researches published by Stella S. Taddeo.


Experimental Biology and Medicine | 2010

Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats

Tety Leonardi; Jairam Vanamala; Stella S. Taddeo; Laurie A. Davidson; Mary E. Murphy; Bhimanagouda S. Patil; Naisyin Wang; Raymond J. Carroll; Robert S. Chapkin; Joanne R. Lupton; Nancy D. Turner

Epidemiological evidence suggests that a diet abundant in fruits and vegetables may protect against colon cancer. Bioactive compounds, including flavonoids and limonoids, have been shown to possess antiproliferative and antitumorigenic effects in various cancer models. This experiment investigated the effects of four citrus flavonoids and one limonoid mixture at the promotion stage of chemically induced colon cancer in rats. Male Sprague–Dawley rats (n = 10 rats/group) were randomly allocated to one of six diets formulated to contain 0.1% apigenin, 0.02% naringenin, 0.1% hesperidin, 0.01% nobiletin, 0.035% limonin glucoside/obacunone glucoside mixture or a control diet (0% flavonoid/limonoid). Rats received experimental diets for 10 weeks and were injected with azoxymethane (15 mg/kg) at weeks 3 and 4. Excised colons were evaluated for aberrant crypt foci (ACF) formation, colonocyte proliferation (proliferating cell nuclear antigen assay), apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling assay) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (immunoblotting). When compared with the control diet, apigenin lowered the number of high multiplicity ACF (HMACF >4 aberrant crypts/focus) by 57% (P < 0.05), while naringenin lowered both the number of HMACF by 51% (P < 0.05) and the proliferative index by 32% (P < 0.05). Both apigenin and naringenin increased apoptosis of luminal surface colonocytes (78% and 97%, respectively; P < 0.05) when compared with the control diet. Hesperidin, nobiletin and the limonin glucoside/obacunone glucoside mixture did not affect these variables. The colonic mucosal protein levels of iNOS or COX-2 were not different among the six diet groups. The ability of dietary apigenin and naringenin to reduce HMACF, lower proliferation (naringenin only) and increase apoptosis may contribute toward colon cancer prevention. However, these effects were not due to mitigation of iNOS and COX-2 protein levels at the ACF stage of colon cancer.


Carcinogenesis | 2008

Upregulation of p21Waf1/Cip1 expression in vivo by butyrate administration can be chemoprotective or chemopromotive depending on the lipid component of the diet

Kristy Covert Crim; Lisa M. Sanders; Mee Young Hong; Stella S. Taddeo; Nancy D. Turner; Robert S. Chapkin; Joanne R. Lupton

The overall goal of this research was to separate out the effects of butyrate from its fiber source and determine in vivo if it upregulates colonic histone acetylation, p21(Waf1/Cip1) expression (p21) and apoptosis and if this sequela of events is protective against aberrant crypt foci (ACF) formation. Eighty Sprague-Dawley rats were provided defined diets with either corn oil or fish oil as the lipid source, +/- butyrate-containing capsules targeted for release in the colon and +/- azoxymethane (AOM) (10 rats per group). Diets were provided for 11 weeks and at termination colonocyte nuclear histone H4 and p21 expression were determined by immunohistochemistry, apoptosis was measured by the terminal deoxynucleotide transferase biotin-dUTP nick end labeling assay and aberrant crypt numbers and multiplicity were enumerated. Luminal butyrate levels were also quantified. AOM injection repressed p21 expression, which was reversed by butyrate supplementation. Although butyrate enhanced p21 expression with both dietary lipid sources, the increase in p21 resulted in an increase in apoptosis and decrease in ACF with fish oil, but had no effect on apoptosis and increased ACF with corn oil. This significant interaction between fat, butyrate (fiber) and p21 expression with one combination being protective and the other promotive of colon carcinogenesis reinforces the importance of considering diet as a key factor in chemoprevention.


Journal of Nutrition | 2009

Quercetin May Suppress Rat Aberrant Crypt Foci Formation by Suppressing Inflammatory Mediators That Influence Proliferation and Apoptosis

Cynthia A. Warren; Kimberly Paulhill; Laurie A. Davidson; Joanne R. Lupton; Stella S. Taddeo; Mee Young Hong; Raymond J. Carroll; Robert S. Chapkin; Nancy D. Turner

The flavonoid quercetin suppresses cell proliferation and enhances apoptosis in vitro. In this study, we determined whether quercetin protects against colon cancer by regulating the protein level of phosphatidylinositol 3-kinase (PI 3-kinase) and Akt or by suppressing the expression of proinflammatory mediators [cyclooxygenase (COX)-1, COX-2, inducible nitric oxide synthase (iNOS)] during the aberrant crypt (AC) stage. Forty male rats were randomly assigned to receive diets containing quercetin (0 or 4.5 g/kg) and injected subcutaneously with saline or azoxymethane (AOM; 2 times during wk 3 and 4). The colon was resected 4 wk after the last AOM injection and samples were used to determine high multiplicity AC foci (HMACF; foci with >4 AC) number, colonocyte proliferation and apoptosis by immunohistochemistry, expression of PI 3-kinase (p85 and p85alpha subunits) and Akt by immunoblotting, and COX-1, COX-2, and iNOS expression by real time RT-PCR. Quercetin-fed rats had fewer (P = 0.033) HMACF. Relative to the control diet, quercetin lowered the proliferative index (P = 0.035) regardless of treatment and diminished the AOM-induced elevation in crypt column cell number (P = 0.044) and expansion of the proliferative zone (P = 0.021). The proportion of apoptotic colonocytes in AOM-injected rats increased with quercetin treatment (P = 0.014). Levels of p85 and p85alpha subunits of PI 3-kinase and total Akt were unaffected by dietary quercetin. However, quercetin tended to suppress (P < 0.06) the expression of COX-1 and COX-2. Expression of iNOS was elevated by AOM injection (P = 0.0001). In conclusion, quercetin suppresses the formation of early preneoplastic lesions in colon carcinogenesis, which occurred in concert with reductions in proliferation and increases in apoptosis. It is possible the effects on proliferation and apoptosis resulted from the tendency for quercetin to suppress the expression of proinflammatory mediators.


Free Radical Biology and Medicine | 2003

Dietary fish oil reduces oxidative DNA damage in rat colonocytes.

Laura K. Bancroft; Joanne R. Lupton; Laurie A. Davidson; Stella S. Taddeo; Mary E. Murphy; Raymond J. Carroll; Robert S. Chapkin

Prolonged generation of reactive oxygen species by inflammatory mediators can induce oxidative DNA damage (8-oxodG formation), potentially resulting in intestinal tumorigenesis. Fish oil (FO), compared to corn oil (CO), has been shown to downregulate inflammation and upregulate apoptosis targeted at damaged cells. We hypothesized FO could protect the intestine against 8-oxodG formation during dextran sodium sulfate- (DSS-) induced inflammation. We provided 60 rats with FO- or CO-supplemented diets for 2 weeks with or without 3% DSS in drinking water for 48 h. Half the treated rats received 48 additional h of untreated water before termination. Due to DSS treatment, the intestinal epithelium had higher levels of 8-oxodG (p =.04), induction of repair enzyme OGG1 mRNA (p =.02), and higher levels of apoptosis at the top of colonic crypts (p =.01) and in surface cells (p <.0001). FO-fed rats, compared to CO, had lower levels of 8-oxodG (p =.05) and increased apoptosis (p =.04) in the upper crypt region; however, FO had no significant effect on OGG1 mRNA. We conclude that FO protects intestinal cells against oxidative DNA damage in part via deletion mechanisms.


Journal of Nutrition | 2011

A Chemoprotective Fish Oil- and Pectin-Containing Diet Temporally Alters Gene Expression Profiles in Exfoliated Rat Colonocytes throughout Oncogenesis

Youngmi Cho; Hyemee Kim; Nancy D. Turner; John C. Mann; Jiawei Wei; Stella S. Taddeo; Laurie A. Davidson; Naisyin Wang; Marina Vannucci; Raymond J. Carroll; Robert S. Chapkin; Joanne R. Lupton

We have demonstrated that fish oil- and pectin-containing (FO/P) diets protect against colon cancer compared with corn oil and cellulose (CO/C) by upregulating apoptosis and suppressing proliferation. To elucidate the mechanisms whereby FO/P diets induce apoptosis and suppress proliferation during the tumorigenic process, we analyzed the temporal gene expression profiles from exfoliated rat colonocytes. Rats consumed diets containing FO/P or CO/C and were injected with azoxymethane (AOM; 2 times, 15 mg/kg body weight, subcutaneously). Feces collected at initiation (24 h after AOM injection) and at aberrant crypt foci (ACF) (7 wk postinjection) and tumor (28 wk postinjection) stages of colon cancer were used for poly (A)+ RNA extraction. Gene expression signatures were determined using Codelink arrays. Changes in phenotypes (ACF, apoptosis, proliferation, and tumor incidence) were measured to establish the regulatory controls contributing to the chemoprotective effects of FO/P. At initiation, FO/P downregulated the expression of 3 genes involved with cell adhesion and enhanced apoptosis compared with CO/C. At the ACF stage, the expression of genes involved in cell cycle regulation was modulated by FO/P and the zone of proliferation was reduced in FO/P rats compared with CO/C rats. FO/P also increased apoptosis and the expression of genes that promote apoptosis at the tumor endpoint compared with CO/C. We conclude that the effects of chemotherapeutic diets on epithelial cell gene expression can be monitored noninvasively throughout the tumorigenic process and that a FO/P diet is chemoprotective in part due to its ability to affect expression of genes involved in apoptosis and cell cycle regulation throughout all stages of tumorigenesis.


PLOS ONE | 2015

Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis

Lauren E. Ritchie; Stella S. Taddeo; Brad R. Weeks; Florence Lima; Susan A. Bloomfield; M. Andrea Azcarate-Peril; Sara R. Zwart; Scott M. Smith; Nancy D. Turner

Astronaut intestinal health may be impacted by microgravity, radiation, and diet. The aim of this study was to characterize how high and low linear energy transfer (LET) radiation, microgravity, and elevated dietary iron affect colon microbiota (determined by 16S rDNA pyrosequencing) and colon function. Three independent experiments were conducted to achieve these goals: 1) fractionated low LET γ radiation (137Cs, 3 Gy, RAD), high Fe diet (IRON) (650 mg/kg diet), and a combination of low LET γ radiation and high Fe diet (IRON+RAD) in male Sprague-Dawley rats; 2) high LET 38Si particle exposure (0.050 Gy), 1/6 G partial weight bearing (PWB), and a combination of high LET38Si particle exposure and PWB in female BalbC/ByJ mice; and 3) 13 d spaceflight in female C57BL/6 mice. Low LET radiation, IRON and spaceflight increased Bacteroidetes and decreased Firmicutes. RAD and IRON+RAD increased Lactobacillales and lowered Clostridiales compared to the control (CON) and IRON treatments. Low LET radiation, IRON, and spaceflight did not significantly affect diversity or richness, or elevate pathogenic genera. Spaceflight increased Clostridiales and decreased Lactobacillales, and similar trends were observed in the experiment using a ground-based model of microgravity, suggesting altered gravity may affect colonic microbiota. Although we noted no differences in colon epithelial injury or inflammation, spaceflight elevated TGFβ gene expression. Microbiota and mucosal characterization in these models is a first step in understanding the impact of the space environment on intestinal health.


Nutrients | 2017

Impact of Novel Sorghum Bran Diets on DSS-Induced Colitis

Lauren E. Ritchie; Stella S. Taddeo; Brad R. Weeks; Raymond J. Carroll; Linda Dykes; Lloyd W. Rooney; Nancy D. Turner

We have demonstrated that polyphenol-rich sorghum bran diets alter fecal microbiota; however, little is known regarding their effect on colon inflammation. Our aim was to characterize the effect of sorghum bran diets on intestinal homeostasis during dextran sodium sulfate (DSS)-induced colitis. Male Sprague-Dawley rats (N = 20/diet) were provided diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins) or Hi Tannin Black (both) sorghum bran. Colitis was induced (N = 10/diet) with three separate 48-h exposures to 3% DSS, and feces were collected. On Day 82, animals were euthanized and the colon resected. Only discrete mucosal lesions, with no diarrhea or bloody stools, were observed in DSS rats. Only bran diets upregulated proliferation and Tff3, Tgfβ and short chain fatty acids (SCFA) transporter expression after a DSS challenge. DSS did not significantly affect fecal SCFA concentrations. Bran diets alone upregulated repair mechanisms and SCFA transporter expression, which suggests these polyphenol-rich sorghum brans may suppress some consequences of colitis.


Carcinogenesis | 2006

Suppression of colon carcinogenesis by bioactive compounds in grapefruit

Jairam Vanamala; Tety Leonardi; Bhimanagouda S. Patil; Stella S. Taddeo; Mary E. Murphy; Leonard M. Pike; Robert S. Chapkin; Joanne R. Lupton; Nancy D. Turner


Journal of Nutrition | 1997

Wheat Bran Diet Reduces Tumor Incidence in a Rat Model of Colon Cancer Independent of Effects on Distal Luminal Butyrate Concentrations

Debra L. Zoran; Nancy D. Turner; Stella S. Taddeo; Robert S. Chapkin; Joanne R. Lupton


The FASEB Journal | 2006

Bran from black or brown sorghum suppresses colon carcinogenesis

Nancy D. Turner; A. Diaz; Stella S. Taddeo; Jairam Vanamala; Cassandra M. McDonough; Linda Dykes; Mary E. Murphy; Raymond J. Carroll; Lloyd W. Rooney

Collaboration


Dive into the Stella S. Taddeo's collaboration.

Researchain Logo
Decentralizing Knowledge