Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy M. Miller is active.

Publication


Featured researches published by Nancy M. Miller.


Journal of Bacteriology | 2009

Genome Sequences of Three Agrobacterium Biovars Help Elucidate the Evolution of Multichromosome Genomes in Bacteria

Steven C. Slater; Barry S. Goldman; Brad Goodner; João C. Setubal; Stephen K. Farrand; Eugene W. Nester; Thomas J. Burr; Lois M. Banta; Allan W. Dickerman; Ian T. Paulsen; L. Otten; Garret Suen; Roy D. Welch; Nalvo F. Almeida; Frank Arnold; Oliver T. Burton; Zijin Du; Adam D. Ewing; Eric Godsy; Sara E. Heisel; Kathryn L. Houmiel; Jinal Jhaveri; Jing Lu; Nancy M. Miller; Stacie Norton; Qiang Chen; Waranyoo Phoolcharoen; Victoria Ohlin; Dan Ondrusek; Nicole Pride

The family Rhizobiaceae contains plant-associated bacteria with critical roles in ecology and agriculture. Within this family, many Rhizobium and Sinorhizobium strains are nitrogen-fixing plant mutualists, while many strains designated as Agrobacterium are plant pathogens. These contrasting lifestyles are primarily dependent on the transmissible plasmids each strain harbors. Members of the Rhizobiaceae also have diverse genome architectures that include single chromosomes, multiple chromosomes, and plasmids of various sizes. Agrobacterium strains have been divided into three biovars, based on physiological and biochemical properties. The genome of a biovar I strain, A. tumefaciens C58, has been previously sequenced. In this study, the genomes of the biovar II strain A. radiobacter K84, a commercially available biological control strain that inhibits certain pathogenic agrobacteria, and the biovar III strain A. vitis S4, a narrow-host-range strain that infects grapes and invokes a hypersensitive response on nonhost plants, were fully sequenced and annotated. Comparison with other sequenced members of the Alphaproteobacteria provides new data on the evolution of multipartite bacterial genomes. Primary chromosomes show extensive conservation of both gene content and order. In contrast, secondary chromosomes share smaller percentages of genes, and conserved gene order is restricted to short blocks. We propose that secondary chromosomes originated from an ancestral plasmid to which genes have been transferred from a progenitor primary chromosome. Similar patterns are observed in select Beta- and Gammaproteobacteria species. Together, these results define the evolution of chromosome architecture and gene content among the Rhizobiaceae and support a generalized mechanism for second-chromosome formation among bacteria.


Journal of Bacteriology | 2009

Genome Sequence of Azotobacter vinelandii, an Obligate Aerobe Specialized To Support Diverse Anaerobic Metabolic Processes

João C. Setubal; Patricia C. Dos Santos; Barry S. Goldman; Helga Ertesvåg; Guadelupe Espin; Luis M. Rubio; Svein Valla; Nalvo F. Almeida; Divya Balasubramanian; Lindsey Cromes; Leonardo Curatti; Zijin Du; Eric Godsy; Brad Goodner; Kaitlyn Hellner-Burris; Jose A. Hernandez; Katherine Houmiel; Juan Imperial; Christina Kennedy; Timothy J. Larson; Phil Latreille; Lauren S. Ligon; Jing Lu; Mali Mærk; Nancy M. Miller; Stacie Norton; Ina P. O'Carroll; Ian T. Paulsen; Estella C. Raulfs; Rebecca Roemer

Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins.


PLOS ONE | 2011

The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes

John M. Chaston; Garret Suen; Sarah L. Tucker; Aaron W. Andersen; Archna Bhasin; Edna Bode; Helge B. Bode; Alexander O. Brachmann; Charles E. Cowles; Kimberly N. Cowles; Creg Darby; Limaris de Léon; Kevin Drace; Zijin Du; Alain Givaudan; Erin E. Herbert Tran; Kelsea A. Jewell; Jennifer J. Knack; Karina C. Krasomil-Osterfeld; Ryan Kukor; Anne Lanois; Phil Latreille; Nancy K. Leimgruber; Carolyn M. Lipke; Renyi Liu; Xiaojun Lu; Eric C. Martens; Pradeep Reddy Marri; Claudine Médigue; Megan L. Menard

Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points.


BMC Genomics | 2007

Optical mapping as a routine tool for bacterial genome sequence finishing.

Phil Latreille; Stacie Norton; Barry S. Goldman; John Henkhaus; Nancy M. Miller; Brad Barbazuk; Helge B. Bode; Creg Darby; Zijin Du; Steve Forst; Brad Goodner; Heidi Goodrich-Blair; Steven C. Slater

BackgroundIn sequencing the genomes of two Xenorhabdus species, we encountered a large number of sequence repeats and assembly anomalies that stalled finishing efforts. This included a stretch of about 12 Kb that is over 99.9% identical between the plasmid and chromosome of X. nematophila.ResultsWhole genome restriction maps of the sequenced strains were produced through optical mapping technology. These maps allowed rapid resolution of sequence assembly problems, permitted closing of the genome, and allowed correction of a large inversion in a genome assembly that we had considered finished.ConclusionOur experience suggests that routine use of optical mapping in bacterial genome sequence finishing is warranted. When combined with data produced through 454 sequencing, an optical map can rapidly and inexpensively generate an ordered and oriented set of contigs to produce a nearly complete genome sequence assembly.


Archive | 2006

Methods for genetic control of plant pest infestation and compositions thereof

Andrey A. Boukharov; Zijin Du; Liang Guo; David K. Kovalic; Maolong Lu; James P. McCarter; Nancy M. Miller; Mark Vaudin; Deryck J. Williams; Wei Wu


Archive | 2007

Identification and use of target genes for control of plant parasitic nematodes

Andrey A. Boukharov; Zijin Du; Liang Guo; Michelle Coutu Hresko; David K. Kovalic; Zhaolong Li; Maolong Lu; James P. McCarter; Nancy M. Miller; Mark Vaudin; Deryck J. Williams; Wei Wu


Archive | 2007

Identificación y uso de genes diana para el control de nematodos parásitos de plantas

Andrey A. Boukharov; Zijin Du; Liang Guo; Michelle Coutu Hresko; David K. Kovalic; Zhaolong Li; Maolong Lu; James P. McCarter; Nancy M. Miller; Mark Vaudin; Deryck J. Williams; Wei Wu


Archive | 2007

Identification et utilisation de genes cibles en vue de lutter contre des nematodes parasites de plantes

Andrey A. Boukharov; Zijin Du; Liang Guo; Michelle Coutu Hresko; David K. Kovalic; Zhaolong Li; Maolong Lu; James P. McCarter; Nancy M. Miller; Mark Vaudin; Deryck J. Williams; Wei Wu


Archive | 2007

Identification and use of target genes for control of the plant parasitic nematodes heterodera glycines

Andrey A. Boukharov; Zijin Du; Liang Guo; Michelle Coutu Hresko; David K. Kovalic; Zhaolong Li; Maolong Lu; James P. McCarter; Nancy M. Miller; Mark Vaudin; Deryck J. Williams; Wei Wu


Archive | 2007

Identifizierung und verwendung von zielgenen zur steuerung pflanzenparasitärer nematoden

Andrey A. Boukharov; Zijin Du; Liang Guo; Michelle Coutu Hresko; David K. Kovalic; Zhaolong Li; Maolong Lu; James P. McCarter; Nancy M. Miller; Mark Vaudin; Deryck J. Williams; Wei Wu

Collaboration


Dive into the Nancy M. Miller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James P. McCarter

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wu

Iowa State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge