Nancy M. Sawtell
Cincinnati Children's Hospital Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nancy M. Sawtell.
Journal of Virology | 2001
Richard L. Thompson; Nancy M. Sawtell
ABSTRACT A complex interaction has evolved between the hosts peripheral nervous system (PNS) and herpes simplex virus type 1 (HSV-1). Sensory neurons are permissive for viral replication, yet the virus can also enter a latent state in these cells. The interplay of viral and neuronal signals that regulate the switch between the viral lytic and latent states is not understood. The latency-associated transcript (LAT) regulates the establishment of the latent state and is required for >65% of the latent infections established by HSV-1 (R. L. Thompson and N. M. Sawtell, J. Virol. 71:5432–5440, 1997). To further investigate how LAT functions, a 1.9-kb deletion that includes the entire LAT promoter and 827 bp of the 5′ end of the primary LAT mRNA was introduced into strain 17syn+. The wild-type parent, three independently derived deletion mutants, and two independently derived genomically rescued variants of the mutants were analyzed in a mouse ocular model. The number of latent sites established in trigeminal ganglion (TG) neurons was determined using a single-cell quantitative PCR assay for the viral genome on purified TG neurons. It was found that the LAT null mutants established ∼75% fewer latent infections than the number established by the parental strain or rescued variant. The reduced establishment phenotype of LAT null mutants was due at least in part to a dramatic increase in the loss of TG neurons in animals infected with the LAT mutants. Over half of the neurons in the TG were destroyed following infection with the LAT mutants, and this was significantly more than were lost following infection with wild type. This is the first demonstration that the HSV LAT locus prevents the destruction of sensory neurons. The death of these neurons did not appear to be the result of increased apoptosis as measured by a terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay. Animals latently infected with the LAT null mutants reactivated less frequently in vivo and this was consistent with the reduction in the number of neurons in which latency was established. Thus, one function of the LAT gene is to protect sensory neurons and enhance the establishment of latency in the PNS.
The Journal of Infectious Diseases | 2012
Senad Divanovic; Nancy M. Sawtell; Aurelien Trompette; Jamie I. Warning; Alexandra Dias; Andrea M. Cooper; George S. Yap; Moshe Arditi; Kenichi Shimada; James B. DuHadaway; George C. Prendergast; Randall J. Basaraba; Andrew L. Mellor; David H. Munn; Julio Aliberti; Christopher L. Karp
Recent studies have underscored physiological and pathophysiological roles for the tryptophan-degrading enzyme indolamine 2,3-dioxygenase (IDO) in immune counterregulation. However, IDO was first recognized as an antimicrobial effector, restricting tryptophan availability to Toxoplasma gondii and other pathogens in vitro. The biological relevance of these findings came under question when infectious phenotypes were not forthcoming in IDO-deficient mice. The recent discovery of an IDO homolog, IDO-2, suggested that the issue deserved reexamination. IDO inhibition during murine toxoplasmosis led to 100% mortality, with increased parasite burdens and no evident effects on the immune response. Similar studies revealed a counterregulatory role for IDO during leishmaniasis (restraining effector immune responses and parasite clearance), and no evident role for IDO in herpes simplex virus type 1 (HSV-1) infection. Thus, IDO plays biologically important roles in the host response to diverse intracellular infections, but the dominant nature of this role--antimicrobial or immunoregulatory--is pathogen-specific.
Journal of Virology | 2000
Richard L. Thompson; Nancy M. Sawtell
ABSTRACT The replication properties of a thymidine kinase-negative (TK−) mutant of herpes simplex virus type 1 (HSV-1) were exploited to examine the relative contributions of replication at the body surface and within trigeminal ganglia (TG) on the establishment of latent infections. The replication of a TK− mutant, 17/tBTK−, was reduced by ∼12-fold on the mouse cornea compared to the rescued isolate 17/tBRTK+, and no replication of 17/tBTK− in the TG of these mice was detected. About 1.8% of the TG neurons of mice infected with 17/tBTK− harbored the latent viral genome compared to 23% of those infected with 17/tBRTK+. In addition, the latent sites established by the TK− mutant contained fewer copies of the HSV-1 genome (average, 2.3/neuron versus 28/neuron). On the snout, sustained robust replication of 17tBTK− in the absence of significant replication within the TG resulted in a modest increase in the number of latent sites. Importantly, these latently infected neurons displayed a wild-type latent-genome copy number profile, with some neurons containing hundreds of copies of the TK− mutant genome. As expected, the replication of the TK− mutant appeared to be blocked prior to DNA replication in most ganglionic neurons in that (i) virus replication was severely restricted in ganglia, (ii) the number of neurons expressing HSV proteins was reduced 30-fold compared to the rescued isolate, (iii) cell-to-cell spread of virus was not detected within ganglia, and (iv) the proportion of infected neurons expressing late proteins was reduced by 89% compared to the rescued strain. These results demonstrate that the viral TK gene is required for the efficient establishment of latency. This requirement appears to be primarily for efficient replication within the ganglion, which leads to a sixfold increase in the number of latent sites established. Further, latent sites with high genome copy number can be established in the absence of significant virus genome replication in neurons. This suggests that neurons can be infected by many HSV virions and still enter the latent state.
Journal of Virology | 2006
Richard L. Thompson; Nancy M. Sawtell
ABSTRACT The stress-induced host cell factors initiating the expression of the herpes simplex virus lytic cycle from the latent viral genome are not known. Previous studies have focused on the effect of specific viral proteins on reactivation, i.e., the production of detectable infectious virus. However, identification of the viral protein(s) through which host cell factors transduce entry into the lytic cycle and analysis of the promoter(s) of this (these) first protein(s) will provide clues to the identity of the stress-induced host cell factors important for reactivation. In this report, we present the first strategy developed for this type of analysis and use this strategy to test the established hypothesis that the herpes simplex virus ICP0 protein initiates reactivation from the latent state. To this end, ICP0 null and promoter mutants were analyzed for the abilities (i) to exit latency and produce lytic-phase viral proteins (initiate reactivation) and (ii) to produce infectious viral progeny (reactivate) in explant and in vivo. Infection conditions were manipulated so that approximately equal numbers of latent infections were established by the parental strains, the mutants, and their genomically restored counterparts, eliminating disparate latent pool sizes as a complicating factor. Following hyperthermic stress (HS), which induces reactivation in vivo, equivalent numbers of neurons exited latency (as evidenced by the expression of lytic-phase viral proteins) in ganglia latently infected with either the ICP0 null mutant dl1403 or the parental strain. In contrast, infectious virus was detected in the ganglia of mice latently infected with the parental strain but not with ICP0 null mutant dl1403 or FXE. These data demonstrate that the role of ICP0 in the process of reactivation is not as a component of the switch from latency to lytic-phase gene expression; rather, ICP0 is required after entry into the lytic cycle has occurred. Similar analyses were carried out with the ΔTfi mutant, which contains a 350-bp deletion in the ICP0 promoter, and the genomically restored isolate, ΔTfiR. The numbers of latently infected neurons exiting latency were not different for ΔTfi and ΔTfiR. However, ΔTfi did not reactivate in vivo, whereas ΔTfiR reactivated in ∼38% of the mice. In addition, ICP0 was detected in ΔTfiR-infected neurons exiting latency but was not detected in those neurons exiting latency infected with ΔTfi. We conclude that while ICP0 is important and perhaps essential for infectious virus production during reactivation in vivo, this protein is not required and appears to play no major role in the initiation of reactivation in vivo.
Journal of Virology | 2004
Nancy M. Sawtell; Richard L. Thompson
ABSTRACT The in vivo ganglionic environment directs the latent herpes simplex virus transcriptional program. Since stress-driven perturbations in sensory neurons are thought to play a critical role in the transition from latency to reactivation, a primary concern in the selection of a valid model of the molecular interactions leading to reactivation is the faithful recapitulation of these environments. In this study reactivation of latently infected ganglia excised and cultured in vitro (explanted) is compared to reactivation occurring in latently infected ganglia in vivo following hyperthermic stress. Three notable points emerged. (i) Neurons in explanted ganglia exhibited marked morphological changes within 2 to 3 h postexplant. DNA fragmentation in neuronal nuclei was detected at 3 h, and atypical expression of cell cycle- and stress-regulated proteins such as geminin, cdk2, cdk4, and cytochrome c became apparent at 2 to 48 h. These changes were associated with axotomy and explant and not with the initiation or progression of reactivation and were not observed in ganglia following in vivo hyperthermic stress. (ii) Despite these differences, during the first 22 h primary reactivation events were restricted to a very small number of neurons in vivo and in explanted ganglia. This suggests that at any given time only a few latently infected neurons are competent to reactivate or that the probability of reactivation occurring in any particular neuron is very low. Importantly, the marked changes detected in explanted ganglia were not correlated with increased reactivation, demonstrating that these changes were not associated with the reactivation process per se. (iii) Secondary spread of virus was evident in explanted ganglia within 36 h, an event not observed in vivo. We conclude that explant reactivation may provide an ancillary system for selected studies of the early events in reactivation. However, clear signs of neuronal degeneration within 2 to 3 h postexplant indicate that these ganglia are undergoing major physiological changes not associated with the reactivation process. This ongoing neurodegeneration could alter even the early virus-host interactions in reactivation, and thus caution in the extrapolation of results obtained in explants to the in vivo interactions initiating reactivation is warranted.
PLOS Pathogens | 2012
Frédéric Catez; Christel Picard; Kathrin Held; Sylvain Gross; Antoine Rousseau; Diethilde Theil; Nancy M. Sawtell; Marc Labetoulle; Patrick Lomonte
Major human pathologies are caused by nuclear replicative viruses establishing life-long latent infection in their host. During latency the genomes of these viruses are intimately interacting with the cell nucleus environment. A hallmark of herpes simplex virus type 1 (HSV-1) latency establishment is the shutdown of lytic genes expression and the concomitant induction of the latency associated (LAT) transcripts. Although the setting up and the maintenance of the latent genetic program is most likely dependent on a subtle interplay between viral and nuclear factors, this remains uninvestigated. Combining the use of in situ fluorescent-based approaches and high-resolution microscopic analysis, we show that HSV-1 genomes adopt specific nuclear patterns in sensory neurons of latently infected mice (28 days post-inoculation, d.p.i.). Latent HSV-1 genomes display two major patterns, called “Single” and “Multiple”, which associate with centromeres, and with promyelocytic leukemia nuclear bodies (PML-NBs) as viral DNA-containing PML-NBs (DCP-NBs). 3D-image reconstruction of DCP-NBs shows that PML forms a shell around viral genomes and associated Daxx and ATRX, two PML partners within PML-NBs. During latency establishment (6 d.p.i.), infected mouse TGs display, at the level of the whole TG and in individual cells, a substantial increase of PML amount consistent with the interferon-mediated antiviral role of PML. “Single” and “Multiple” patterns are reminiscent of low and high-viral genome copy-containing neurons. We show that LAT expression is significantly favored within the “Multiple” pattern, which underlines a heterogeneity of LAT expression dependent on the viral genome copy number, pattern acquisition, and association with nuclear domains. Infection of PML-knockout mice demonstrates that PML/PML-NBs are involved in virus nuclear pattern acquisition, and negatively regulate the expression of the LAT. This study demonstrates that nuclear domains including PML-NBs and centromeres are functionally involved in the control of HSV-1 latency, and represent a key level of host/virus interaction.
Molecular Therapy | 2008
Mark A. Currier; Rebecca A. Gillespie; Nancy M. Sawtell; Yonatan Y. Mahller; Greg Stroup; Margaret H. Collins; Hirokazu Kambara; E. Antonio Chiocca; Timothy P. Cripe
Oncolytic herpes simplex virus (oHSV) mutants are under development as anticancer therapeutics. One such vector, rRp450, is ICP6-deleted and expresses a prodrug enzyme for cyclophosphamide (CPA) (rat CYP2B1). Little is known about rRp450s toxicity profile, especially in combination with CPA. We tested rRp450/CPA for antitumor efficacy in an aggressive human xenograft sarcoma model, measured virus production in primary cells, and tested rRp450/CPA for safety in immunocompetent mice. CPA enhanced the antitumor efficacy of rRp450. Relative to wild-type HSV-1, rRp450 replication was attenuated approximately 10,000-fold in human primary hepatocytes, differentiated primary foreskin keratinocytes, and primary Schwann cells. In vivo, intravenous and intracranial (IC) rRp450 injection at the strength of 10(8) plaque-forming units (pfu) alone or followed 24 hours later by intraperitoneal (IP) CPA was well tolerated and had no significant effect clinically on blood counts or chemistries. By contrast, intravenous KOS was found to be uniformly neurotoxic at 10(5) and fatal at 10(6) pfu, and IC virus was fatal in most mice at 10(4) pfu. Low levels of virus DNA were detected in some organs following intravenous and IC virus injection, but were not significantly altered by CPA. HSV replication was not detected in reactivation studies of isolated organs. Our findings suggest rRp450/CPA is safe and warrants further study as a potential combination in anticancer therapeutics.
Journal of Virology | 2003
Nancy M. Sawtell
ABSTRACT Recent studies utilizing an ex vivo mouse model of herpes simplex virus (HSV) reactivation have led to the hypothesis that, under physiologic conditions inducing viral reactivation, the immune cells within the infected ganglion block the viral replication cycle and maintain the viral genome in a latent state. One prediction from the ex vivo study is that reactivation in ganglia in vivo would be inhibited at early times postinoculation, when the numbers of inflammatory cells in the ganglia are greatest. To distinguish between an effect of the immune infiltrates on (i) infectious virus produced and/or recovered in the ganglion and (ii) the number of neurons undergoing lytic transcriptional activity (reactivating), an assay to quantify the number of neurons expressing lytic viral protein in ganglia in vivo was developed. Infectious virus and HSV protein-positive neurons were quantified from days 9 through 240 postinoculation in latently infected trigeminal ganglia before and at 22 h after hyperthermic-stress-induced reactivation. Significant increases in the amount of virus and the number of positive neurons were detected poststress in ganglia at all times examined. Unexpectedly, the greatest levels of reactivation occurred at the times examined most proximal to inoculation. Acyclovir was utilized to stop residual acute-phase virus production, and this treatment did not reduce the level of reactivation on day 14. Thus, the virus measured after induction was a product of reactivation. These data indicate that, in contrast to observations in the ex vivo model, immune cells in the ganglia during the resolution of acute infection do not inhibit reactivation of the virus in ganglia in vivo.
The Journal of Infectious Diseases | 2001
Nancy M. Sawtell; Richard L. Thompson; Lawrence R. Stanberry; David I. Bernstein
There remains a lack of agreement on the effect of antiviral therapy on herpes simplex virus (HSV) latency and subsequent reactivation. To gain insight into this important issue, a single-cell polymerase chain reaction assay was used to quantify the effects of high-dose acyclovir on latent infection in a mouse model. Treatment with 50 mg/kg of acyclovir every 8 h reduced the number of latently infected neurons by >90% when treatment was begun before 24 h after infection and by 80% and 70% when begun at 48 or 72 h after infection, respectively. The biologic significance of these reductions was evaluated by using a well-established in vivo reactivation model. The number of animals in which virus reactivated was reduced significantly, even when acyclovir therapy was delayed until 72 h after infection, a time when animals had developed lesions. These findings indicate that potent antiviral therapy during early primary HSV infection can reduce the magnitude of the latent infection, such that a significant decrease in reactivation is observed.
Journal of Immunological Methods | 1986
Amadeo J. Pesce; Raymond Apple; Nancy M. Sawtell; J. Gabriel Michael
The measurement of the mouse antibody response to cationized bovine serum albumin (cat BSA) and bovine gammaglobulin (cat BGG) was complicated because of the unique properties of these antigens. Cat BGG non-specifically bound rabbit anti-mouse gammaglobulin conjugated to alkaline phosphatase. This was minimized by adding the polyanion, heparin. Cat BSA also reacted non-specifically with some conjugates, but the reaction with specific antibody was enhanced by the addition of the polyanions heparin or dextran sulfate. The non-specific reaction did not appear to be related to the concentration of antigen used to coat the plastic plates. In addition, in ELISA inhibition experiments high concentration of antigens (greater than 100 micrograms/ml) seemed to result in non-specific inhibition of the antibody antigen reaction. A proposed model to explain the problems is based on the polycationic surface formed by coating the plates with the cationized proteins. This cationic surface can be neutralized by polyanions, reducing the non-specific and enhancing the specific reactions. It appears that other polycationic molecules might share these unique properties and these factors must be considered when they are measured.