Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy N. FitzSimmons is active.

Publication


Featured researches published by Nancy N. FitzSimmons.


Molecular Ecology | 1998

Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas)

Nancy N. FitzSimmons

Paternity of 22 green turtle (Chelonia mydas) clutches from 13 females of the southern Great Barrier Reef breeding population was determined through microsatellite analyses at five loci, including the analysis of successive clutches for nine of the females. A large number of alleles per locus (10–40) provided probabilities of detecting multiple paternity that were quite high, particularly at all loci combined (99.9%). Although green turtles are promiscuous breeders and there was an expectation of finding extensive multiple paternity, only two clutches were multiply sired and, in these, very few eggs had been fertilized by a secondary male. The rarity of multiple paternity may reflect either a low proportion of multiple matings by females in this population, or sperm competition, possibly resulting from a first‐male sperm preference. Additionally, the analysis of > 900 offspring provided data on mutations, which included 20 mutation events that were observed in 27 offspring and involved both maternal and paternal lineages. Most mutations (n = 16) occurred at a single highly variable locus and their presence emphasizes the need to use multiple loci in paternity studies.


Molecular Ecology | 2006

The genetic structure of Australasian green turtles (Chelonia mydas): exploring the geographical scale of genetic exchange

Kiki E. M. Dethmers; Damien Broderick; Craig Moritz; Nancy N. FitzSimmons; Colin J. Limpus; Shane Lavery; Scott D. Whiting; Mick Guinea; Robert I. T. Prince; Rod Kennett

Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long‐term mark–recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Φ = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.


Forensic Science Medicine and Pathology | 2010

DNA detective: a review of molecular approaches to wildlife forensics

Erika Alacs; Arthur Georges; Nancy N. FitzSimmons; James Robertson

Illegal trade of wildlife is growing internationally and is worth more than USD


Proceedings of the Royal Society of London B: Biological Sciences | 2009

Evidence for transoceanic migrations by loggerhead sea turtles in the southern Pacific Ocean

Nancy N. FitzSimmons; Colin J. Limpus; S. Kelez; X. Velez-Zuazo; Michelle Waycott

20 billion per year. DNA technologies are well suited to detect and provide evidence for cases of illicit wildlife trade yet many of the methods have not been verified for forensic applications and the diverse range of methods employed can be confusing for forensic practitioners. In this review, we describe the various genetic techniques used to provide evidence for wildlife cases and thereby exhibit the diversity of forensic questions that can be addressed using currently available genetic technologies. We emphasise that the genetic technologies to provide evidence for wildlife cases are already available, but that the research underpinning their use in forensics is lacking. Finally we advocate and encourage greater collaboration of forensic scientists with conservation geneticists to develop research programs for phylogenetic, phylogeography and population genetics studies to jointly benefit conservation and management of traded species and to provide a scientific basis for the development of forensic methods for the regulation and policing of wildlife trade.


Hormones and Behavior | 1999

Interactions between Behavior and Plasma Steroids within the Scramble Mating System of the Promiscuous Green Turtle, Chelonia mydas

Tim S. Jessop; Nancy N. FitzSimmons; Colin J. Limpus; Joan M. Whittier

Post-hatchling loggerhead turtles (Caretta caretta) in the northern Pacific and northern Atlantic Oceans undertake transoceanic developmental migrations. Similar migratory behaviour is hypothesized in the South Pacific Ocean as post-hatchling loggerhead turtles are observed in Peruvian fisheries, yet no loggerhead rookeries occur along the coast of South America. This hypothesis was supported by analyses of the size-class distribution of 123 post-hatchling turtles in the South Pacific and genetic analysis of mtDNA haplotypes of 103 nesting females in the southwest Pacific, 19 post-hatchlings stranded on the southeastern Australian beaches and 22 post-hatchlings caught by Peruvian longline fisheries. Only two haplotypes (CCP1 93% and CCP5 7%) were observed across all samples, and there were no significant differences in haplotype frequencies between the southwest Pacific rookeries and the post-hatchlings. By contrast, the predominant CCP1 haplotype is rarely observed in North Pacific rookeries and haplotype frequencies were strongly differentiated between the two regions (Fst=0.82; p=<0.00001). These results suggest that post-hatchling loggerhead turtles emerging from the southwest Pacific rookeries are undertaking transoceanic migrations to the southeastern Pacific Ocean, thus emphasizing the need for a broader focus on juvenile mortality throughout the South Pacific to develop effective conservation strategies.


Molecular Ecology Resources | 2010

DNA barcodes for globally threatened marine turtles: a registry approach to documenting biodiversity.

Eugenia Naro-Maciel; Brendan N. Reid; Nancy N. FitzSimmons; Minh Duc Le; Rob DeSalle; George Amato

We measured plasma androgen (combined testosterone and 5alpha-dihydrotestosterone) (A) and corticosterone (B) in the promiscuous green turtle (Chelonia mydas) during courtship in the southern Great Barrier Reef. This study examined if reproductive behaviors and intermale aggression induced behavioral androgen and adrenocortical responses in reproductively active male and female green turtles. Associations between reproductive behavior and plasma steroids were investigated in green turtles across the population and within individuals. Levels across a range of both asocial and social behaviors were compared including (a) free swimming behavior; (b) initial courtship interactions; (c) mounted behavior (male and female turtles involved in copulatory activities); (d) intermale aggression (rival males that physically competed with another male turtle or mounted males recipient to these aggressive interactions); and (e) extensive courtship damage (male turtles that had accumulated excessive courtship damage from rival males). Behavioral androgen responses were detected in male turtles, in that plasma A was observed to increase with both attendant and mounted behavior. Male turtles who had been subjected to intermale aggression or who had accumulated severe courtship damage exhibited significantly lower plasma A than their respective controls. No pronounced adrenocortical response was observed after either intermale aggression or accumulation of extensive courtship damage. Female turtles exhibited a significant increase in plasma B during swimming versus mounted behavior, but no change in plasma A. We discuss our results in terms of how scramble polygamy might influence behavioral androgen interactions differently from more typical combative and territorial forms of male polygamy.


Marine and Freshwater Research | 2010

Migration of green turtles (Chelonia mydas) from Australasian feeding grounds inferred from genetic analyses

Kiki E. M. Dethmers; Michael P. Jensen; Nancy N. FitzSimmons; Damien Broderick; Colin J. Limpus; Craig Moritz

DNA barcoding is a global initiative that provides a standardized and efficient tool to catalogue and inventory biodiversity, with significant conservation applications. Despite progress across taxonomic realms, globally threatened marine turtles remain underrepresented in this effort. To obtain DNA barcodes of marine turtles, we sequenced a segment of the cytochrome c oxidase subunit I (COI) gene from all seven species in the Atlantic and Pacific Ocean basins (815 bp; n = 80). To further investigate intraspecific variation, we sequenced green turtles (Chelonia mydas) from nine additional Atlantic/Mediterranean nesting areas (n = 164) and from the Eastern Pacific (n = 5). We established character‐based DNA barcodes for each species using unique combinations of character states at 76 nucleotide positions. We found that no haplotypes were shared among species and the mean of interspecific variation ranged from 1.68% to 13.0%, and the mean of intraspecific variability was relatively low (0–0.90%). The Eastern Pacific green turtle sequence was identical to an Australian haplotype, suggesting that this marker is not appropriate for identifying these phenotypically distinguishable populations. Analysis of COI revealed a north–south gradient in green turtles of Western Atlantic/Mediterranean nesting areas, supporting a hypothesis of recent dispersal from near equatorial glacial refugia. DNA barcoding of marine turtles is a powerful tool for species identification and wildlife forensics, which also provides complementary data for conservation genetic research.


Journal of Heredity | 2016

Phylogeography, Genetic Diversity, and Management Units of Hawksbill Turtles in the Indo-Pacific

Sarah M. Vargas; Michael P. Jensen; Simon Y. W. Ho; Asghar Mobaraki; Damien Broderick; Jeanne A. Mortimer; Scott D. Whiting; Jeffrey D. Miller; Robert I. T. Prince; Ian Bell; Xavier Hoenner; Colin J. Limpus; Fabrício R. Santos; Nancy N. FitzSimmons

Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.


Journal of Herpetology | 2013

Mating Systems and Multiple Paternity in the Estuarine Crocodile (Crocodylus porosus)

Justine L. Lewis; Nancy N. FitzSimmons; Mona Lisa Jamerlan; Jason C. Buchan; Gordon C. Grigg

Hawksbill turtle (Eretmochelys imbricata) populations have experienced global decline because of a history of intense commercial exploitation for shell and stuffed taxidermied whole animals, and harvest for eggs and meat. Improved understanding of genetic diversity and phylogeography is needed to aid conservation. In this study, we analyzed the most geographically comprehensive sample of hawksbill turtles from the Indo-Pacific Ocean, sequencing 766 bp of the mitochondrial control region from 13 locations (plus Aldabra, n = 4) spanning over 13500 km. Our analysis of 492 samples revealed 52 haplotypes distributed in 5 divergent clades. Diversification times differed between the Indo-Pacific and Atlantic lineages and appear to be related to the sea-level changes that occurred during the Last Glacial Maximum. We found signals of demographic expansion only for turtles from the Persian Gulf region, which can be tied to a more recent colonization event. Our analyses revealed evidence of transoceanic migration, including connections between feeding grounds from the Atlantic Ocean and Indo-Pacific rookeries. Hawksbill turtles appear to have a complex pattern of phylogeography, showing a weak isolation by distance and evidence of multiple colonization events. Our novel dataset will allow mixed-stock analyses of hawksbill turtle feeding grounds in the Indo-Pacific by providing baseline data needed for conservation efforts in the region. Eight management units are proposed in our study for the Indo-Pacific region that can be incorporated in conservation plans of this critically endangered species.


Heredity | 2014

Sex-linked and autosomal microsatellites provide new insights into island populations of the tammar wallaby

Anna J. MacDonald; Nancy N. FitzSimmons; B. Chambers; Marilyn B. Renfree; Stephen D. Sarre

Abstract Microsatellite markers were used to investigate the mating system of the Estuarine Crocodile (Crocodylus porosus). Three-hundred and eighty-six hatchlings from 13 clutches from a wild Northern Territory population, and 364 hatchlings from 21 clutches from a captive North Queensland population, were sampled. All samples were genotyped across five microsatellite loci. Multiple paternity was found in 69% of clutches in the wild population compared to 38% of clutches in the captive population. Up to three possible fathers were indicated in some clutches. Shared paternity was suggested by the presence of a common paternal genotype within two clutches in the wild population and among up to three clutches from a large shared pen in the captive population. The probability of detecting multiple paternity at all loci was high; 95% in the wild population and 98% in the captive population. There was no evidence of increased hatching success in the clutches that indicated multiple paternity compared to single paternity clutches in either population (P = 0.43 to P = 0.67). It is unknown whether the occurrence of multiple paternity in C. porosus is a result of multiple mating within the same breeding season or of sperm stored from matings in a previous season. These results suggest the genetic mating system for C. porosus is not polygynous but more likely promiscuous, and there is no evidence of dominant alpha males who control paternity in large areas.

Collaboration


Dive into the Nancy N. FitzSimmons's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Moritz

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Michael P. Jensen

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika Alacs

University of Canberra

View shared research outputs
Top Co-Authors

Avatar

Jeffrey D. Miller

Queensland Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge