Nancy S. Longo
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nancy S. Longo.
Science | 2010
Xueling Wu; Zhi-Yong Yang; Yuxing Li; Carl-Magnus Hogerkorp; William R. Schief; Michael S. Seaman; Tongqing Zhou; Stephen D. Schmidt; Lan Wu; Ling Xu; Nancy S. Longo; Krisha McKee; Sijy O’Dell; Mark K. Louder; Diane Wycuff; Yu Feng; Martha Nason; Nicole A. Doria-Rose; Mark Connors; Peter D. Kwong; Mario Roederer; Richard T. Wyatt; Gary J. Nabel; John R. Mascola
Designer Anti-HIV Developing a protective HIV vaccine remains a top global health priority. One strategy to identify potential vaccine candidates is to isolate broadly neutralizing antibodies from infected individuals and then attempt to elicit the same antibody response through vaccination (see the Perspective by Burton and Weiss). Wu et al. (p. 856, published online 8 July) now report the identification of three broadly neutralizing antibodies, isolated from an HIV-1–infected individual, that exhibited great breadth and potency of neutralization and were specific for the co-receptor CD4-binding site of the glycoprotein 120 (gp120), part of the viral Env spike. Zhou et al. (p. 811, published online 8 July) analyzed the crystal structure for one of these antibodies, VRC01, in complex with an HIV-1 gp120. VRC01 focuses its binding onto a conformationally invariant domain that is the site of initial CD4 attachment, which allows the antibody to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. The epitopes recognized by these antibodies suggest potential immunogens that can inform vaccine design. A human antibody achieves broad neutralization by binding the viral site of recognition for the primary host receptor, CD4. Cross-reactive neutralizing antibodies (NAbs) are found in the sera of many HIV-1–infected individuals, but the virologic basis of their neutralization remains poorly understood. We used knowledge of HIV-1 envelope structure to develop antigenically resurfaced glycoproteins specific for the structurally conserved site of initial CD4 receptor binding. These probes were used to identify sera with NAbs to the CD4-binding site (CD4bs) and to isolate individual B cells from such an HIV-1–infected donor. By expressing immunoglobulin genes from individual cells, we identified three monoclonal antibodies, including a pair of somatic variants that neutralized over 90% of circulating HIV-1 isolates. Exceptionally broad HIV-1 neutralization can be achieved with individual antibodies targeted to the functionally conserved CD4bs of glycoprotein 120, an important insight for future HIV-1 vaccine design.
Nature | 2012
Jinghe Huang; Gilad Ofek; Leo Laub; Mark K. Louder; Nicole A. Doria-Rose; Nancy S. Longo; Hiromi Imamichi; Robert T. Bailer; Bimal K. Chakrabarti; Shailendra Kumar Sharma; S. Munir Alam; Tao Wang; Yongping Yang; Baoshan Zhang; Stephen A. Migueles; Richard T. Wyatt; Barton F. Haynes; Peter D. Kwong; John R. Mascola; Mark Connors
Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein.
Nature | 2014
Nicole A. Doria-Rose; Chaim A. Schramm; Jason Gorman; Penny L. Moore; Jinal N. Bhiman; Brandon J. DeKosky; Michael J. Ernandes; Ivelin S. Georgiev; Helen J. Kim; Marie Pancera; Ryan P. Staupe; Han R. Altae-Tran; Robert T. Bailer; Ema T. Crooks; Albert Cupo; Aliaksandr Druz; Nigel Garrett; Kam Hon Hoi; Rui Kong; Mark K. Louder; Nancy S. Longo; Krisha McKee; Molati Nonyane; Sijy O’Dell; Ryan S. Roark; Rebecca S. Rudicell; Stephen D. Schmidt; Daniel J. Sheward; Cinque Soto; Constantinos Kurt Wibmer
Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01–12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30–38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.
Immunity | 2013
Tongqing Zhou; Jiang Zhu; Xueling Wu; Stephanie Moquin; Baoshan Zhang; Priyamvada Acharya; Ivelin S. Georgiev; Han R. Altae-Tran; Gwo-Yu Chuang; M. Gordon Joyce; Young Do Kwon; Nancy S. Longo; Mark K. Louder; Timothy S. Luongo; Krisha McKee; Chaim A. Schramm; Jeff Skinner; Yongping Yang; Zhongjia Yang; Z. F. Zhang; Anqi Zheng; Mattia Bonsignori; Barton F. Haynes; Johannes F. Scheid; Michel C. Nussenzweig; Melissa Simek; Dennis R. Burton; Wayne C. Koff; James C. Mullikin; Mark Connors
Antibodies of the VRC01 class neutralize HIV-1, arise in diverse HIV-1-infected donors, and are potential templates for an effective HIV-1 vaccine. However, the stochastic processes that generate repertoires in each individual of >10(12) antibodies make elicitation of specific antibodies uncertain. Here we determine the ontogeny of the VRC01 class by crystallography and next-generation sequencing. Despite antibody-sequence differences exceeding 50%, antibody-gp120 cocrystal structures reveal VRC01-class recognition to be remarkably similar. B cell transcripts indicate that VRC01-class antibodies require few specific genetic elements, suggesting that naive-B cells with VRC01-class features are generated regularly by recombination. Virtually all of these fail to mature, however, with only a few-likely one-ancestor B cell expanding to form a VRC01-class lineage in each donor. Developmental similarities in multiple donors thus reveal the generation of VRC01-class antibodies to be reproducible in principle, thereby providing a framework for attempts to elicit similar antibodies in the general population.
Cell | 2015
Tongqing Zhou; Rebecca M. Lynch; Lei Chen; Priyamvada Acharya; Xueling Wu; Nicole A. Doria-Rose; M. Gordon Joyce; Daniel Lingwood; Cinque Soto; Robert T. Bailer; Michael J. Ernandes; Rui Kong; Nancy S. Longo; Mark K. Louder; Krisha McKee; Sijy O’Dell; Stephen D. Schmidt; Lillian Tran; Zhongjia Yang; Aliaksandr Druz; Timothy S. Luongo; Stephanie Moquin; Sanjay Srivatsan; Yongping Yang; Baoshan Zhang; Anqi Zheng; Marie Pancera; Tatsiana Kirys; Ivelin S. Georgiev; Tatyana Gindin
The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures -8 determined here- of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies.
Cell | 2015
Xueling Wu; Z. F. Zhang; Chaim A. Schramm; M. Gordon Joyce; Young Do Kwon; Tongqing Zhou; Zizhang Sheng; Baoshan Zhang; Sijy O’Dell; Krisha McKee; Ivelin S. Georgiev; Gwo-Yu Chuang; Nancy S. Longo; Rebecca M. Lynch; Kevin O. Saunders; Cinque Soto; Sanjay Srivatsan; Yongping Yang; Robert T. Bailer; Mark K. Louder; Betty Benjamin; Robert W. Blakesley; Gerry Bouffard; Shelise Brooks; Holly Coleman; Mila Dekhtyar; Michael Gregory; Xiaobin Guan; Jyoti Gupta; Joel Han
HIV-1-neutralizing antibodies develop in most HIV-1-infected individuals, although highly effective antibodies are generally observed only after years of chronic infection. Here, we characterize the rate of maturation and extent of diversity for the lineage that produced the broadly neutralizing antibody VRC01 through longitudinal sampling of peripheral B cell transcripts over 15 years and co-crystal structures of lineage members. Next-generation sequencing identified VRC01-lineage transcripts, which encompassed diverse antibodies organized into distinct phylogenetic clades. Prevalent clades maintained characteristic features of antigen recognition, though each evolved binding loops and disulfides that formed distinct recognition surfaces. Over the course of the study period, VRC01-lineage clades showed continuous evolution, with rates of ∼2 substitutions per 100 nucleotides per year, comparable to that of HIV-1 evolution. This high rate of antibody evolution provides a mechanism by which antibody lineages can achieve extraordinary diversity and, over years of chronic infection, develop effective HIV-1 neutralization.
PLOS ONE | 2011
Felix Breden; Christa Lepik; Nancy S. Longo; Marinieve Montero; Peter E. Lipsky; Jamie K. Scott
Background Antibodies (Abs) produced during HIV-1 infection rarely neutralize a broad range of viral isolates; only eight broadly-neutralizing (bNt) monoclonal (M)Abs have been isolated. Yet, to be effective, an HIV-1 vaccine may have to elicit the essential features of these MAbs. The V genes of all of these bNt MAbs are highly somatically mutated, and the VH genes of five of them encode a long (≥20 aa) third complementarity-determining region (CDR-H3). This led us to question whether long CDR-H3s and high levels of somatic mutation (SM) are a preferred feature of anti-HIV bNt MAbs, or if other adaptive immune responses elicit them in general. Methodology and Principal Findings We assembled a VH-gene sequence database from over 700 human MAbs of known antigen specificity isolated from chronic (viral) infections (ChI), acute (bacterial and viral) infections (AcI), and systemic autoimmune diseases (SAD), and compared their CDR-H3 length, number of SMs and germline VH-gene usage. We found that anti-HIV Abs, regardless of their neutralization breadth, tended to have long CDR-H3s and high numbers of SMs. However, these features were also common among Abs associated with other chronic viral infections. In contrast, Abs from acute viral infections (but not bacterial infections) tended to have relatively short CDR-H3s and a low number of SMs, whereas SAD Abs were generally intermediate in CDR-H3 length and number of SMs. Analysis of VH gene usage showed that ChI Abs also tended to favor distal germline VH-genes (particularly VH1-69), especially in Abs bearing long CDR-H3s. Conclusions and Significance The striking difference between the Abs produced during chronic vs. acute viral infection suggests that Abs bearing long CDR-H3s, high levels of SM and VH1-69 gene usage may be preferentially selected during persistent infection.
Blood | 2009
Nancy S. Longo; Patricia L. Lugar; Sule Yavuz; Wen Zhang; Peter H. L. Krijger; Daniel E. Russ; Dereje D. Jima; Sandeep S. Dave; Amrie C. Grammer; Peter E. Lipsky
Subjects with X-linked hyper-IgM syndrome (X-HIgM) have a markedly reduced frequency of CD27(+) memory B cells, and their Ig genes have a low level of somatic hypermutation (SHM). To analyze the nature of SHM in X-HIgM, we sequenced 209 nonproductive and 926 productive Ig heavy chain genes. In nonproductive rearrangements that were not subjected to selection, as well as productive rearrangements, most of the mutations were within targeted RGYW, WRCY, WA, or TW motifs (R = purine, Y = pyrimidine, and W = A or T). However, there was significantly decreased targeting of the hypermutable G in RGYW motifs. Moreover, the ratio of transitions to transversions was markedly increased compared with normal. Microarray analysis documented that specific genes involved in SHM, including activation-induced cytidine deaminase (AICDA) and uracil-DNA glycosylase (UNG2), were up-regulated in normal germinal center (GC) B cells, but not induced by CD40 ligation. Similar results were obtained from light chain rearrangements. These results indicate that in the absence of CD40-CD154 interactions, there is a marked reduction in SHM and, specifically, mutations of AICDA-targeted G residues in RGYW motifs along with a decrease in transversions normally related to UNG2 activity.
Journal of Virology | 2012
Yuxing Li; Sijy O'Dell; Richard Wilson; Xueling Wu; Stephen D. Schmidt; Carl-Magnus Hogerkorp; Mark K. Louder; Nancy S. Longo; Christian Poulsen; Javier Guenaga; Bimal K. Chakrabarti; Nicole A. Doria-Rose; Mario Roederer; Mark Connors; John R. Mascola; Richard T. Wyatt
ABSTRACT The gp120 CD4 binding site (CD4bs) and coreceptor binding site (CoRbs) are two functionally conserved elements of the HIV-1 envelope glycoproteins (Env). We previously defined the presence of CD4bs-neutralizing antibodies in the serum of an HIV-1-infected individual and subsequently isolated the CD4bs-specific monoclonal antibodies (MAbs) VRC01 and VRC03 from the memory B cell population. Since this donors serum also appeared to contain neutralizing antibodies to the CoRbs, we employed a differential fluorescence-activated cell sorter (FACS)-based sorting strategy using an Env trimer possessing a CoRbs knockout mutation (I420R) to isolate specific B cells. The MAb VRC06 was recovered from these cells, and its genetic sequence allowed us to identify a clonal relative termed VRC06b, which was isolated from a prior cell sort using a resurfaced core gp120 probe and its cognate CD4bs knockout mutant. VRC06 and VRC06b neutralized 22% and 44% of viruses tested, respectively. Epitope mapping studies revealed that the two MAbs were sensitive to mutations in both the gp120 CoRbs and the CD4bs and could cross-block binding of both CD4bs and CoRbs MAbs to gp120. Fine mapping indicated contacts within the gp120 bridging sheet and the base of the third major variable region (V3), which are elements of the CoRbs. Cell surface binding assays demonstrated preferential recognition of fully cleaved Env trimers over uncleaved trimers. Thus, VRC06 and VRC06b are Env trimer precursor cleavage-sensitive neutralizing MAbs that bind to a region of gp120 that overlaps both the primary and the secondary HIV-1 receptor binding sites.
Nature Protocols | 2013
Jinghe Huang; Nicole A. Doria-Rose; Nancy S. Longo; Leo Laub; Chien-Li Lin; Ellen Turk; Byong Ha Kang; Stephen A. Migueles; Robert T. Bailer; John R. Mascola; Mark Connors
Isolation of monoclonal antibodies is an important technique for understanding the specificities and characteristics of antibodies that underlie the humoral immune response to a given antigen. Here we describe a technique for isolating monoclonal antibodies from human peripheral blood mononuclear cells. The protocol includes strategies for the isolation of switch-memory B cells from peripheral blood, the culture of B cells, the removal of the supernatant for screening and the lysis of B cells in preparation for immunoglobulin heavy-chain and light-chain amplification and cloning. We have observed that the addition of cytokines IL-2, IL-21 and irradiated 3T3-msCD40L feeder cells can successfully stimulate switch-memory B cells to produce high concentrations of IgG in the supernatant. The supernatant may then be screened by appropriate assays for binding or for other functions. This protocol can be completed in 2 weeks. It is adaptable to use in other species and enables the efficient isolation of antibodies with a desired functional characteristic without prior knowledge of specificity.