Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naoki Ohyabu is active.

Publication


Featured researches published by Naoki Ohyabu.


Journal of the American Chemical Society | 2009

An essential epitope of anti-MUC1 monoclonal antibody KL-6 revealed by focused glycopeptide library.

Naoki Ohyabu; Hiroshi Hinou; Takahiko Matsushita; Ryukou Izumi; Hiroki Shimizu; Keiko Kawamoto; Yoshito Numata; Hiroko Togame; Hiroshi Takemoto; Hirosato Kondo; Shin-Ichiro Nishimura

Human serum Krebs von den Lungen-6 (KL-6) antigen, a high-molecular-weight glycoprotein classified as a polymorphic epithelial mucin (MUC1), is a biomarker of diseases such as interstitial pneumonia, lung adenocarcinoma, breast cancer, colorectal adenocarcinoma, and hepatocellular carcinoma. Anti-KL-6 monoclonal antibody (anti-KL-6 MAb) is therefore a potential diagnostic and therapeutic reagent. Although glycosylation at Thr/Ser residues of the tandem-repeating MUC1 peptides appears to determine the disease-associated antigenic structures of KL-6, an essential epitope structure recognized by anti-KL-6 MAb remains unclear. In the present study, a novel compound library of synthetic MUC1 glycopeptides allowed the first rapid and precise evaluation of the specific epitope structure of anti-KL-6 MAb by combined use of a tailored glycopeptides library and common ELISA protocol. We demonstrated that the minimal antigenic structure, an essential epitope, recognized by anti-KL-6 MAb is a heptapeptide sequence Pro-Asp-Thr-Arg-Pro-Ala-Pro (PDTRPAP), in which the Thr residue is modified by Neu5Ac alpha2,3Gal beta1,3GalNAc alpha (2,3-sialyl T antigen, core 1-type O-glycan). Anti-KL-6 MAb did not bind with other tumor-relevant antigens, such as GalNAc alpha (Tn), Neu5Ac alpha2,6GalNAc alpha (STn), and Gal beta1,3GalNAc alpha (T), except for Neu5Ac alpha2,3Gal beta1,3(Neu5Ac alpha2,6)GalNAc alpha (2,3/2,6-disialyl T). However, anti-KL-6 MAb could not differentiate the above minimal antigenic glycopeptide from some core 2-based glycopeptides involving this crucial epitope structure and showed a similar binding affinity toward these compounds, indicating that branching at the O-6 position of GalNAc residue does not influence the interaction of anti-KL-6 MAb with some MUC1 glycoproteins involving an essential epitope. Actually, anti-KL-6 MAb reacts with 2,3/2,6-disialyl T having a 2,3-sialyl T component. This is why anti-KL-6 MAb often reacts with various kinds of tumor-derived MUC1 glycoproteins as well as a clinically important MUC1 glycoprotein biomarker of interstitial pneumonia, namely KL-6, originally discovered as a circulating pulmonary adenocarcinoma-associated antigen. In other words, combined use of anti-KL-6 MAb and some probes that can differentiate the sugars substituted at the O-6 position of the GalNAc residue in MUC1 glycopeptides including the PDTRPAP sequence might be a promising diagnostic protocol for individual disease-specific biomarkers. It was also revealed that glycosylation at neighboring Thr/Ser residues outside the immunodominant PDTRPAP motif strongly influences the interaction between anti-KL-6 MAb and MUC1 glycopeptides involving the identified epitope. Our novel strategy will greatly facilitate the processes for the identification of the tumor-specific and strong epitopes of various known anti-MUC1 MAbs and allow for their practical application in the generation of improved antibody immunotherapeutics, diagnostics, and MUC1-based cancer vaccines.


Biochemistry | 2009

Functional Neoglycopeptides: Synthesis and Characterization of a New Class of MUC1 Glycoprotein Models Having Core 2-Based O-Glycan and Complex-Type N-Glycan Chains

Takahiko Matsushita; Reiko Sadamoto; Naoki Ohyabu; Hideki Nakata; Masataka Fumoto; Naoki Fujitani; Yasuhiro Takegawa; Takeshi Sakamoto; Masaki Kurogochi; Hiroshi Hinou; Hiroki Shimizu; Takaomi Ito; Kentarou Naruchi; Hiroko Togame; Hiroshi Takemoto; Hirosato Kondo; Shin-Ichiro Nishimura

An efficient protocol for the construction of MUC1-related glycopeptide analogues having complex O-glycan and N-glycan chains was established by integrating chemical and enzymatic approaches on the functional polymer platforms. We demonstrated the feasibility of sortase A-mediated ligation between two glycopeptide segments by tagging with signal peptides, LPKTGLR and GG, at each C- or N-terminal position. Structural analysis of the macromolecular N,O-glycopeptides was performed by means of ESI-TOFMS (MS/MS) equipped with an electron-captured dissociation device. Immunological assay using MUC1 glycopeptides synthesized in this study revealed that N-glycosylation near the antigenic O-glycosylated PDTR motif did not disturb the interaction between the anti-MUC1 monoclonal antibody and this crucial O-glycopeptide moiety. NMR study indicated that the N-terminal immunodominant region [Ala-Pro-Asp-Thr(O-glycan)-Arg] forms an inverse gamma-turn-like structure, while the C-terminal region composed of N-glycopeptide and linker SrtA-peptide was proved to be an independently random structure. These results indicate that the bulky O- and N-glycan chains can function independently as disease-relevant epitopes and ligands for carbohydrate-binding proteins, when both are combined by an artificial intervening peptide having a possible effect of separating N- and C-terminal regions. The present strategy will greatly facilitate rapid synthesis of multiply functionalized complex neoglycopeptides as new types of convenient tools or models for the investigation of thhe structure-function relationship of various glycoproteins and development of novel class glycopeptide-based biopharmaceuticals, drug delivery systems, and biomedical materials.


Chemistry: A European Journal | 2011

An Efficient Approach for the Characterization of Mucin‐Type Glycopeptides: The Effect of O‐Glycosylation on the Conformation of Synthetic Mucin Peptides

Ryo Hashimoto; Naoki Fujitani; Yasuhiro Takegawa; Masaki Kurogochi; Takahiko Matsushita; Kentaro Naruchi; Naoki Ohyabu; Hiroshi Hinou; Xiao-Dong Gao; Naomi Manri; Hiroyuki Satake; Akihito Kaneko; Takeshi Sakamoto; Shin-Ichiro Nishimura

Despite the growing importance of mucin core O-glycosylation in many biological processes including the protection of epithelial cell surfaces, the immune response, cell adhesion, inflammation, and tumorigenesis/metastasis, the regulation mechanism and conformational significance of the multiple introduction of α-GalNAc residues by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAcTs) remains unclear. Here we report an efficient approach by combining MS and NMR spectroscopy that allows for the identification of O-glycosylation site(s) and the effect of O-glycosylation on the peptide backbone structures during enzymatic mucin domain assembly by using an isoform UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T2 (ppGalNAcT2) in vitro. An electron-capture dissociation device in a linear radio-frequency quadrupole ion trap (RFQ-ECD) combined with a time-of-flight (TOF) mass spectrometer was employed for the identification of Thr/Ser residues occupied by α-GalNAc branching among multiple and potential O-glycosylation sites in the tandem repeats of human mucin glycoproteins MUC4 (Thr-Ser-Ser-Ala-Ser-Thr-Gly-His-Ala-Thr-Pro-Leu-Pro-Val-Thr-Asp) and MUC5AC (Pro-Thr-Thr-Val-Gly-Ser-Thr-Thr-Val-Gly). In the present study, O-glycosylation was initiated specifically at Thr10 in naked MUC4 peptide and additional introduction of α-GalNAc proceeded preferentially but randomly at three other Thr residues to afford densely glycosylated MUC4 containing six α-GalNAc residues at Thr1, Ser2, Ser5, Thr6, Thr10, and Thr15. On the contrary, O-glycosylation of naked MUC5AC peptide occurred predominantly at consecutive Thr residues and led to MUC5AC with four α-GalNAc residues at Thr2, Thr3, Thr7, and Thr8. The solution structures determined by NMR spectroscopic studies elicited that the preferential introduction of α-GalNAc at Thr10 of MUC4 stabilizes specifically a β-like extended backbone structure at this area, whereas other synthetic models with a single α-GalNAc residue at Thr1, Thr6, or Thr15 did not exhibit any converged three-dimensional structure at the proximal peptide moiety. Such conformational impact on the underlying peptides was proved to be remarkable in the glycosylation at the consecutive Thr residues of MUC5AC.


Biochemistry | 2013

Site-Specific Conformational Alteration Induced by Sialylation of MUC1 Tandem Repeating Glycopeptides at an Epitope Region for the Anti-KL-6 Monoclonal Antibody

Takahiko Matsushita; Naoki Ohyabu; Naoki Fujitani; Kentaro Naruchi; Hiroki Shimizu; Hiroshi Hinou; Shin-Ichiro Nishimura

Protein O-glycosylation is an essential step for controlling structure and biological functions of glycoproteins involving differentiation, cell adhesion, immune response, inflammation, and tumorigenesis and metastasis. This study provides evidence of site-specific structural alteration induced during multiple sialylation at Ser/Thr residues of the tandem repeats in human MUC1 glycoprotein. Systematic nuclear magnetic resonance (NMR) study revealed that sialylation of the MUC1 tandem repeating glycopeptide, Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala with core 2-type O-glycans at five potential glycosylation sites, afforded a specific conformational change at one of the most important cancer-relevant epitopes (Pro-Asp-Thr-Arg). This result indicates that disease-relevant epitope structures of human epithelial cell surface mucins can be altered both by the introduction of an inner GalNAc residue and by the distal sialylation in a peptide sequence-dependent manner. These data demonstrate the feasibility of NMR-based structural characterization of glycopeptides synthesized in a chemical and enzymatic manner in examining the conformational impact of the distal glycosylation at multiple O-glycosylation sites of mucin-like domains.


Journal of Applied Crystallography | 2010

In‐crystal chemical ligation for lead compound generation

Junji Yamane; Naoki Ohyabu; Min Yao; Hiroshi Takemoto; Isao Tanaka

A new fragment-based growth strategy for lead compound generation is proposed, which is based on in situ chemical ligation and is operable in X-ray-based fragment screening format. The method involves two classes of bifunctional molecules, referred to as anchor molecules and tuning molecules. The anchor molecules are designed to form stable complexes with target proteins and to connect with the tuning molecules. The procedure begins with the introduction of the anchor molecule into the target protein, to which the tuning molecule is linked in the crystal. Proof-of-concept experiments using trypsin crystals charged with para-aldehyde benzamidine showed that the crystals acted as a platform to select self-assembled ligation products. Furthermore, time-resolved crystallography allowed identification of the reaction field and direct visualization of the reaction pathway. The ability to rapidly gain an understanding of the relations between a set of chemical modifications and their interactions with target proteins would accelerate the hit-to-lead process. A potential crystallographic growth strategy via the self-assembly technique and its biological implications are discussed.


Journal of the American Chemical Society | 2016

Convergent Solid-Phase Synthesis of Macromolecular MUC1 Models Truly Mimicking Serum Glycoprotein Biomarkers of Interstitial Lung Diseases.

Naoki Ohyabu; Kiyoshi Kakiya; Yasuhiro Yokoi; Hiroshi Hinou; Shin-Ichiro Nishimura

Synthetic macromolecular MUC1 glycopeptides have been used to unravel molecular mechanisms in antibody recognition of disease-specific epitopes. We have established a novel synthetic strategy for MUC1 tandem repeats having complex O-glycosylation states at each repeating unit based on convergent solid-phase fragment condensation under microwave irradiation. We have accomplished the synthesis of 77 amino acid MUC1 glycopeptides (MW = 12 759) having three major antigenic O-glycoforms [Tn, core 1 (T), and core 2 structures] at 10 designated positions out of 19 potential O-glycosylation sites. We demonstrate that the macromolecular MUC1 glycopeptide displaying the essential glycopeptidic neoepitope Pro-Asp-Thr(sialyl-T)-Arg-Pro-Ala-Pro at two different tandem repeats is an excellent serum MUC1 model showing ideal stoichiometric binding with anti-KL6/MUC1 antibody in the sandwich ELISA to quantify human serum KL6/MUC1 levels as a critical biomarker of interstitial lung diseases.


ACS Omega | 2017

Generation of Novel Anti-MUC1 Monoclonal Antibodies with Designed Carbohydrate Specificities Using MUC1 Glycopeptide Library

Shoichi Naito; Tatsuya Takahashi; Junji Onoda; Shoko Uemura; Naoki Ohyabu; Hiroshi Takemoto; Shoji Yamane; Ikuo Fujii; Shin-Ichiro Nishimura; Yoshito Numata

Numerous anti-mucin 1 (anti-MUC1) antibodies that recognize O-glycan core structures have already been developed. However, most of them show low specificities toward O-glycan structures and/or low affinity toward a monovalent epitope. In this study, using an MUC1 glycopeptide library, we established two novel anti-MUC1 monoclonal antibodies (1B2 and 12D10) with designed carbohydrate specificities. Compared with previously reported anti-MUC1 antibodies, 1B2 and 12D10 showed quite different features regarding their specificities, affinities, and reactivity profiles to various cell lines. Both antibodies recognized specific O-glycan structures at the PDT*R motif (the asterisk represents an O-glycosylation site). 1B2 recognized O-glycans with an unsubstituted O-6 position of the GalNAc residue (Tn, T, and 23ST), whereas 12D10 recognized Neu5Ac at the same position (STn, 26ST, and dST). Neither of them bound to glycopeptides with core 2 O-glycans that have GlcNAc at the O-6 position of the GalNAc residue. Furthermore, 1B2 and 12D10 showed a strong binding to not only native MUC1 but also 20-mer glycopeptide with a monovalent epitope. These anti-MUC1 antibodies should thus become powerful tools for biological studies on MUC1 O-glycan structures. Furthermore, the strategy of using glycopeptide libraries should enable the development of novel antibodies with predesigned O-glycan specificities.


Archive | 2009

Anti-MUC1 antibody

Shin-Ichiro Nishimura; Hiroshi Hinou; Yoshito Numata; Junji Onoda; Shoichi Naito; Naoki Ohyabu


Archive | 2011

NOVEL MUC1 ANTIBODY

Shin-Ichiro Nishimura; Shoichi Naito; Naoki Ohyabu; Tatsuya Takahashi; Yoshito Numata; Keiko Kawamoto


Archive | 2013

Novel non-aromatic carbocyclic or non-aromatic heterocyclic derivative

Akira Matsumura; 松村 明; Koji Masuda; 功嗣 増田; Kentaro Asahi; 健太郎 旭; Masafumi Iwatsu; 理史 岩津; Naoki Ohyabu; 巨樹 大藪; Yoshikazu Sasaki; 義一 佐々木

Collaboration


Dive into the Naoki Ohyabu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroki Shimizu

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge