Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naomi De Silva is active.

Publication


Featured researches published by Naomi De Silva.


Nature | 2011

Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans

Caroline J. Breitbach; James Burke; Derek J. Jonker; Joe Stephenson; Andrew R. Haas; Laura Quan Man Chow; Jorge Nieva; Tae Ho Hwang; Anne Moon; Richard H. Patt; Adina Pelusio; Fabrice Le Boeuf; Joseph K. Burns; Laura Evgin; Naomi De Silva; Sara Cvancic; Terri Robertson; Ji Eun Je; Yeon Sook Lee; Kelley Parato; Jean-Simon Diallo; Aaron Fenster; Manijeh Daneshmand; John C. Bell; David Kirn

The efficacy and safety of biological molecules in cancer therapy, such as peptides and small interfering RNAs (siRNAs), could be markedly increased if high concentrations could be achieved and amplified selectively in tumour tissues versus normal tissues after intravenous administration. This has not been achievable so far in humans. We hypothesized that a poxvirus, which evolved for blood-borne systemic spread in mammals, could be engineered for cancer-selective replication and used as a vehicle for the intravenous delivery and expression of transgenes in tumours. JX-594 is an oncolytic poxvirus engineered for replication, transgene expression and amplification in cancer cells harbouring activation of the epidermal growth factor receptor (EGFR)/Ras pathway, followed by cell lysis and anticancer immunity. Here we show in a clinical trial that JX-594 selectively infects, replicates and expresses transgene products in cancer tissue after intravenous infusion, in a dose-related fashion. Normal tissues were not affected clinically. This platform technology opens up the possibility of multifunctional products that selectively express high concentrations of several complementary therapeutic and imaging molecules in metastatic solid tumours in humans.


Molecular Therapy | 2011

A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with metastatic melanoma.

Tae-Ho Hwang; Anne Moon; James Burke; Antoni Ribas; Joe Stephenson; Caroline J. Breitbach; Manijeh Daneshmand; Naomi De Silva; Kelley Parato; Jean-Simon Diallo; Yeon-Sook Lee; Ta-Chiang Liu; John C. Bell; David Kirn

JX-594 is a targeted and granulocyte macrophage-colony stimulating factor (GM-CSF)-expressing oncolytic poxvirus designed to selectively replicate in and destroy cancer cells through viral oncolysis and tumor-specific immunity. In order to study the mechanisms-of-action (MOA) of JX-594 in humans, a mechanistic proof-of-concept clinical trial was performed at a low dose equivalent to ≤10% of the maximum-tolerated dose (MTD) in other clinical trials. Ten patients with previously treated stage IV melanoma were enrolled. Tumors were injected weekly for up to nine total treatments. Blood samples and tumor biopsies were analyzed for evidence of transgene activity, virus replication, and immune stimulation. The β-galactosidase (β-gal) transgene was expressed in all patients as evidenced by antibody induction. Six patients had significant induction of GM-CSF-responsive white blood cell (WBC) subsets such as neutrophils (25-300% increase). JX-594 replication and subsequent shedding into blood was detectable in five patients after cycles 1-9. Tumor biopsies demonstrated JX-594 replication, perivascular lymphocytic infiltration, and diffuse tumor necrosis. Mild flu-like symptoms were the most common adverse events. In sum, JX-594 replication, oncolysis, and expression of both transgenes were demonstrated; replication was still evident after multiple cycles. These findings have implications for further clinical development of JX-594 and other transgene-armed oncolytic viruses.


Cancer Research | 2013

Oncolytic Vaccinia Virus Disrupts Tumor-Associated Vasculature in Humans

Caroline J. Breitbach; Rozanne Arulanandam; Naomi De Silva; Steve H. Thorne; Richard H. Patt; Manijeh Daneshmand; Anne Moon; Carolina S. Ilkow; James R. Burke; Tae-Ho Hwang; Jeong Heo; Mong Cho; Hannah Chen; Fernando A. Angarita; Christina L. Addison; J. Andrea McCart; John C. Bell; David Kirn

Efforts to selectively target and disrupt established tumor vasculature have largely failed to date. We hypothesized that a vaccinia virus engineered to target cells with activation of the ras/MAPK signaling pathway (JX-594) could specifically infect and express transgenes (hGM-CSF, β-galactosidase) in tumor-associated vascular endothelial cells in humans. Efficient replication and transgene expression in normal human endothelial cells in vitro required either VEGF or FGF-2 stimulation. Intravenous infusion in mice resulted in virus replication in tumor-associated endothelial cells, disruption of tumor blood flow, and hypoxia within 48 hours; massive tumor necrosis ensued within 5 days. Normal vessels were not affected. In patients treated with intravenous JX-594 in a phase I clinical trial, we showed dose-dependent endothelial cell infection and transgene expression in tumor biopsies of diverse histologies. Finally, patients with advanced hepatocellular carcinoma, a hypervascular and VEGF-rich tumor type, were treated with JX-594 on phase II clinical trials. JX-594 treatment caused disruption of tumor perfusion as early as 5 days in both VEGF receptor inhibitor-naïve and -refractory patients. Toxicities to normal blood vessels or to wound healing were not evident clinically or on MRI scans. This platform technology opens up the possibility of multifunctional engineered vaccinia products that selectively target and infect tumor-associated endothelial cells, as well as cancer cells, resulting in transgene expression, vasculature disruption, and tumor destruction in humans systemically.


Molecular Therapy | 2011

Targeting Tumor Vasculature With an Oncolytic Virus

Caroline J. Breitbach; Naomi De Silva; Theresa Falls; Usaf Aladl; Laura Evgin; Jennifer M Paterson; Yang Yang Sun; Dominic Roy; Julia Rintoul; Manijeh Daneshmand; Kelley Parato; Marianne Stanford; Brian D. Lichty; Aaron Fenster; David Kirn; Harold Atkins; John C. Bell

Oncolytic viruses (OVs) have been engineered or selected for cancer cell-specific infection however, we have found that following intravenous administration of vesicular stomatitis virus (VSV), tumor cell killing rapidly extends far beyond the initial sites of infection. We show here for the first time that VSV directly infects and destroys tumor vasculature in vivo but leaves normal vasculature intact. Three-dimensional (3D) reconstruction of infected tumors revealed that the majority of the tumor mass lacks significant blood flow in contrast to uninfected tumors, which exhibit relatively uniform perfusion. VSV replication in tumor neovasculature and spread within the tumor mass, initiates an inflammatory reaction including a neutrophil-dependent initiation of microclots within tumor blood vessels. Within 6 hours of intravenous administration of VSV and continuing for at least 24 hours, we observed the initiation of blood clots within the tumor vasculature whereas normal vasculature remained clot free. Blocking blood clot formation with thrombin inhibitors prevented tumor vascular collapse. Our results demonstrate that the therapeutic activity of an OV can go far beyond simple infection and lysis of malignant cells.


PLOS ONE | 2010

Enhancement of Vaccinia Virus Based Oncolysis with Histone Deacetylase Inhibitors

Heather MacTavish; Jean-Simon Diallo; Baocheng Huang; Marianne Stanford; Fabrice Le Boeuf; Naomi De Silva; Julie Cox; John Graydon Simmons; Tanya Guimond; Theresa Falls; J. Andrea McCart; Harry Atkins; Caroline J. Breitbach; David Kirn; Stephen H. Thorne; John C. Bell

Histone deacetylase inhibitors (HDI) dampen cellular innate immune response by decreasing interferon production and have been shown to increase the growth of vesicular stomatitis virus and HSV. As attenuated tumour-selective oncolytic vaccinia viruses (VV) are already undergoing clinical evaluation, the goal of this study is to determine whether HDI can also enhance the potency of these poxviruses in infection-resistant cancer cell lines. Multiple HDIs were tested and Trichostatin A (TSA) was found to potently enhance the spread and replication of a tumour selective vaccinia virus in several infection-resistant cancer cell lines. TSA significantly decreased the number of lung metastases in a syngeneic B16F10LacZ lung metastasis model yet did not increase the replication of vaccinia in normal tissues. The combination of TSA and VV increased survival of mice harbouring human HCT116 colon tumour xenografts as compared to mice treated with either agent alone. We conclude that TSA can selectively and effectively enhance the replication and spread of oncolytic vaccinia virus in cancer cells.


Journal of Biological Chemistry | 2006

Internal Ribosome Entry Site-mediated Translation of Apaf-1, but Not XIAP, Is Regulated during UV-induced Cell Death

Nicoleta Hosszu Ungureanu; Mireille Cloutier; Stephen M. Lewis; Naomi De Silva; Jaime D. Blais; John C. Bell; Martin Holcik

Components of the cellular translation machinery are targets of caspase-mediated cleavage during apoptosis that correlates with the inhibition of protein synthesis, which accompanies apoptosis. Paradoxically, protein synthesis is required for apoptosis to occur in many experimental settings. Previous studies showed that two proteins that regulate apoptosis by controlling caspase activity, XIAP and Apaf-1, are translated by a unique, cap-independent mechanism mediated by an internal ribosome entry site (IRES) that is used preferentially under conditions in which normal cap-dependent translation is repressed. We investigated the regulation of XIAP and Apaf-1 following UVC irradiation. We show that UVC irradiation leads to the inhibition of translation and cell death. Furthermore, IRES-mediated translation of Apaf-1, but not XIAP, is enhanced by UVC irradiation, and this increase in Apaf-1 translation correlated with cell death. The enhanced Apaf-1 IRES-mediated translation is caspase-independent but is negatively modulated by the eIF2α kinase protein kinase RNA-like endoplasmic reticulum kinase. These data suggest that progression of UV-induced apoptosis requires IRES-mediated translation of Apaf-1 to ensure continuous levels of Apaf-1 despite an overall suppression of protein synthesis.


Cancer Cell | 2015

VEGF-Mediated Induction of PRD1-BF1/Blimp1 Expression Sensitizes Tumor Vasculature to Oncolytic Virus Infection.

Rozanne Arulanandam; Cory Batenchuk; Fernando A. Angarita; Kathryn Ottolino-Perry; Sophie Cousineau; Amelia Mottashed; Emma Burgess; Theresa Falls; Naomi De Silva; Jovian Tsang; Grant A. Howe; Marie-Claude Bourgeois-Daigneault; David P. Conrad; Manijeh Daneshmand; Caroline J. Breitbach; David Kirn; Leda Raptis; Subash Sad; Harold Atkins; Michael S. Huh; Jean-Simon Diallo; Brian D. Lichty; Carolina S. Ilkow; Fabrice Le Boeuf; Christina L. Addison; J. Andrea McCart; John C. Bell

Oncolytic viruses designed to attack malignant cells can in addition infect and destroy tumor vascular endothelial cells. We show here that this expanded tropism of oncolytic vaccinia virus to the endothelial compartment is a consequence of VEGF-mediated suppression of the intrinsic antiviral response. VEGF/VEGFR2 signaling through Erk1/2 and Stat3 leads to upregulation, nuclear localization, and activation of the transcription repressor PRD1-BF1/Blimp1. PRD1-BF1 does not contribute to the mitogenic effects of VEGF, but directly represses genes involved in type I interferon (IFN)-mediated antiviral signaling. In vivo suppression of VEGF signaling diminishes PRD1-BF1/Blimp1 expression in tumor vasculature and inhibits intravenously administered oncolytic vaccinia delivery to and consequent spread within the tumor.


Journal of Virology | 2013

Resistance to Two Heterologous Neurotropic Oncolytic Viruses, Semliki Forest Virus and Vaccinia Virus, in Experimental Glioma

Markus Vähä-Koskela; Fabrice Le Boeuf; Chantal G Lemay; Naomi De Silva; Jean-Simon Diallo; Julie Cox; Michelle M. Becker; Youngmin Choi; Abhirami A. Ananth; Clara Sellers; Sophie Breton; Dominic Roy; Theresa Falls; Jan Brun; Akseli Hemminki; Ari Hinkkanen; John C. Bell

ABSTRACT Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference.


Journal of Visualized Experiments | 2011

Ex Vivo Infection of Live Tissue with Oncolytic Viruses

Jean-Simon Diallo; Dominic Roy; Hesham Abdelbary; Naomi De Silva; John C. Bell

Oncolytic Viruses (OVs) are novel therapeutics that selectively replicate in and kill tumor cells1. Several clinical trials evaluating the effectiveness of a variety of oncolytic platforms including HSV, Reovirus, and Vaccinia OVs as treatment for cancer are currently underway2-5. One key characteristic of oncolytic viruses is that they can be genetically modified to express reporter transgenes which makes it possible to visualize the infection of tissues by microscopy or bio-luminescence imaging6,7. This offers a unique advantage since it is possible to infect tissues from patients ex vivo prior to therapy in order to ascertain the likelihood of successful oncolytic virotherapy8. To this end, it is critical to appropriately sample tissue to compensate for tissue heterogeneity and assess tissue viability, particularly prior to infection9. It is also important to follow viral replication using reporter transgenes if expressed by the oncolytic platform as well as by direct titration of tissues following homogenization in order to discriminate between abortive and productive infection. The object of this protocol is to address these issues and herein describes 1. The sampling and preparation of tumor tissue for cell culture 2. The assessment of tissue viability using the metabolic dye alamar blue 3. Ex vivo infection of cultured tissues with vaccinia virus expressing either GFP or firefly luciferase 4. Detection of transgene expression by fluorescence microscopy or using an In Vivo Imaging System (IVIS) 5. Quantification of virus by plaque assay. This comprehensive method presents several advantages including ease of tissue processing, compensation for tissue heterogeneity, control of tissue viability, and discrimination between abortive infection and bone fide viral replication.


Nature Communications | 2015

Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing

Rozanne Arulanandam; Cory Batenchuk; Oliver Varette; Chadi Zakaria; Vanessa Garcia; Nicole E. Forbes; Colin Davis; Ramya Krishnan; Raunak Karmacharya; Julie Cox; Anisha Sinha; Andrew Babawy; Katherine Waite; Erica Weinstein; Theresa Falls; Andrew Chen; Jeff Hamill; Naomi De Silva; David P. Conrad; Harold Atkins; Kenneth Garson; Carolina S. Ilkow; Mads Kærn; Barbara C. Vanderhyden; Nahum Sonenberg; Tommy Alain; Fabrice Le Boeuf; John C. Bell; Jean-Simon Diallo

In this study, we show that several microtubule-destabilizing agents used for decades for treatment of cancer and other diseases also sensitize cancer cells to oncolytic rhabdoviruses and improve therapeutic outcomes in resistant murine cancer models. Drug-induced microtubule destabilization leads to superior viral spread in cancer cells by disrupting type I IFN mRNA translation, leading to decreased IFN protein expression and secretion. Furthermore, microtubule-destabilizing agents specifically promote cancer cell death following stimulation by a subset of infection-induced cytokines, thereby increasing viral bystander effects. This study reveals a previously unappreciated role for microtubule structures in the regulation of the innate cellular antiviral response and demonstrates that unexpected combinations of approved chemotherapeutics and biological agents can lead to improved therapeutic outcomes.

Collaboration


Dive into the Naomi De Silva's collaboration.

Top Co-Authors

Avatar

John C. Bell

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Simon Diallo

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Manijeh Daneshmand

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Theresa Falls

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Fabrice Le Boeuf

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harold Atkins

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge