Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theresa Falls is active.

Publication


Featured researches published by Theresa Falls.


Molecular and Cellular Biology | 2006

Perk-Dependent Translational Regulation Promotes Tumor Cell Adaptation and Angiogenesis in Response to Hypoxic Stress

Jaime D. Blais; Christina L. Addison; Robert Edge; Theresa Falls; Huijun Zhao; Kishore K. Wary; Costas Koumenis; Heather P. Harding; David Ron; Martin Holcik; John C. Bell

ABSTRACT It has been well established that the tumor microenvironment can promote tumor cell adaptation and survival. However, the mechanisms that influence malignant progression have not been clearly elucidated. We have previously demonstrated that cells cultured under hypoxic/anoxic conditions and transformed cells in hypoxic areas of tumors activate a translational control program known as the integrated stress response (ISR). Here, we show that tumors derived from K-Ras-transformed Perk−/− mouse embryonic fibroblasts (MEFs) are smaller and exhibit less angiogenesis than tumors with an intact ISR. Furthermore, Perk promotes a tumor microenvironment that favors the formation of functional microvessels. These observations were corroborated by a microarray analysis of polysome-bound RNA in aerobic and hypoxic Perk+/+ and Perk−/− MEFs. This analysis revealed that a subset of proangiogenic transcripts is preferentially translated in a Perk-dependent manner; these transcripts include VCIP, an adhesion molecule that promotes cellular adhesion, integrin binding, and capillary morphogenesis. Taken with the concomitant Perk-dependent translational induction of additional proangiogenic genes identified by our microarray analysis, this study suggests that Perk plays a role in tumor cell adaptation to hypoxic stress by regulating the translation of angiogenic factors necessary for the development of functional microvessels and further supports the contention that the Perk pathway could be an attractive target for novel antitumor modalities.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis

Thi Lien-Anh Nguyên; Hesham Abdelbary; Meztli Arguello; Caroline J. Breitbach; Simon Leveille; Jean-Simon Diallo; Amber Yasmeen; Tarek A. Bismar; David Kirn; Theresa Falls; Valerie E. Snoulten; Barbara C. Vanderhyden; Joel Werier; Harold Atkins; Markus Vähä-Koskela; David F. Stojdl; John C. Bell; John Hiscott

Intratumoral innate immunity can play a significant role in blocking the effective therapeutic spread of a number of oncolytic viruses (OVs). Histone deacetylase inhibitors (HDIs) are known to influence epigenetic modifications of chromatin and can blunt the cellular antiviral response. We reasoned that pretreatment of tumors with HDIs could enhance the replication and spread of OVs within malignancies. Here, we show that HDIs markedly enhance the spread of vesicular stomatitis virus (VSV) in a variety of cancer cells in vitro, in primary tumor tissue explants and in multiple animal models. This increased oncolytic activity correlated with a dampening of cellular IFN responses and augmentation of virus-induced apoptosis. These results illustrate the general utility of HDIs as chemical switches to regulate cellular innate antiviral responses and to provide controlled growth of therapeutic viruses within malignancies. HDIs could have a profoundly positive impact on the clinical implementation of OV therapeutics.


Molecular Therapy | 2012

The Oncolytic Poxvirus JX-594 Selectively Replicates in and Destroys Cancer Cells Driven by Genetic Pathways Commonly Activated in Cancers

Kelley Parato; Caroline J. Breitbach; Fabrice Le Boeuf; Jiahu Wang; Chris Storbeck; Carolina S. Ilkow; Jean-Simon Diallo; Theresa Falls; Joseph K. Burns; Vanessa Garcia; Femina Kanji; Laura Evgin; Kang Hu; Francois Paradis; Shane Knowles; Tae-Ho Hwang; Barbara C. Vanderhyden; Rebecca C. Auer; David Kirn; John C. Bell

Oncolytic viruses are generally designed to be cancer selective on the basis of a single genetic mutation. JX-594 is a thymidine kinase (TK) gene-inactivated oncolytic vaccinia virus expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) and lac-Z transgenes that is designed to destroy cancer cells through replication-dependent cell lysis and stimulation of antitumoral immunity. JX-594 has demonstrated a favorable safety profile and reproducible tumor necrosis in a variety of solid cancer types in clinical trials. However, the mechanism(s) responsible for its cancer-selectivity have not yet been well described. We analyzed the replication of JX-594 in three model systems: primary normal and cancer cells, surgical explants, and murine tumor models. JX-594 replication, transgene expression, and cytopathic effects were highly cancer-selective, and broad spectrum activity was demonstrated. JX-594 cancer-selectivity was multi-mechanistic; replication was activated by epidermal growth factor receptor (EGFR)/Ras pathway signaling, cellular TK levels, and cancer cell resistance to type-I interferons (IFNs). These findings confirm a large therapeutic index for JX-594 that is driven by common genetic abnormalities in human solid tumors. This appears to be the first description of multiple selectivity mechanisms, both inherent and engineered, for an oncolytic virus. These findings have implications for oncolytic viruses in general, and suggest that their cancer targeting is a complex and multifactorial process.


Molecular Therapy | 2010

Identification of Genetically Modified Maraba Virus as an Oncolytic Rhabdovirus

Jan Brun; Dan C. McManus; Charles Lefebvre; Kang Hu; Theresa Falls; Harold Atkins; John C. Bell; J. Andrea McCart; Douglas J. Mahoney; David F. Stojdl

To expand our current array of safe and potent oncolytic viruses, we screened a variety of wild-type (WT) rhabdoviruses against a panel of tumor cell lines. Our screen identified a number of viruses with varying degrees of killing activity. Maraba virus was the most potent of these strains. We built a recombinant system for the Maraba virus platform, engineered a series of attenuating mutations to expand its therapeutic index, and tested their potency in vitro and in vivo. A double mutant (MG1) strain containing both G protein (Q242R) and M protein (L123W) mutations attenuated Maraba virus in normal diploid cell lines, yet appeared to be hypervirulent in cancer cells. This selective attenuation was mediated through interferon (IFN)-dependent and -independent mechanisms. Finally, the Maraba MG1 strain had a 100-fold greater maximum tolerable dose (MTD) than WT Maraba in vivo and resulted in durable cures when systemically administered in syngeneic and xenograft models. In summary, we report a potent new oncolytic rhabdovirus platform with unique tumor-selective attenuating mutations.


Molecular Therapy | 2011

Targeting Tumor Vasculature With an Oncolytic Virus

Caroline J. Breitbach; Naomi De Silva; Theresa Falls; Usaf Aladl; Laura Evgin; Jennifer M Paterson; Yang Yang Sun; Dominic Roy; Julia Rintoul; Manijeh Daneshmand; Kelley Parato; Marianne Stanford; Brian D. Lichty; Aaron Fenster; David Kirn; Harold Atkins; John C. Bell

Oncolytic viruses (OVs) have been engineered or selected for cancer cell-specific infection however, we have found that following intravenous administration of vesicular stomatitis virus (VSV), tumor cell killing rapidly extends far beyond the initial sites of infection. We show here for the first time that VSV directly infects and destroys tumor vasculature in vivo but leaves normal vasculature intact. Three-dimensional (3D) reconstruction of infected tumors revealed that the majority of the tumor mass lacks significant blood flow in contrast to uninfected tumors, which exhibit relatively uniform perfusion. VSV replication in tumor neovasculature and spread within the tumor mass, initiates an inflammatory reaction including a neutrophil-dependent initiation of microclots within tumor blood vessels. Within 6 hours of intravenous administration of VSV and continuing for at least 24 hours, we observed the initiation of blood clots within the tumor vasculature whereas normal vasculature remained clot free. Blocking blood clot formation with thrombin inhibitors prevented tumor vascular collapse. Our results demonstrate that the therapeutic activity of an OV can go far beyond simple infection and lysis of malignant cells.


Molecular Therapy | 2011

Sequential Therapy With JX-594, A Targeted Oncolytic Poxvirus, Followed by Sorafenib in Hepatocellular Carcinoma: Preclinical and Clinical Demonstration of Combination Efficacy

Jeong Heo; Caroline J. Breitbach; Anne Moon; Chang Won Kim; Rick Patt; Mi Kyung Kim; Yu Kyung Lee; Sung Yong Oh; Hyun Young Woo; Kelley Parato; Julia Rintoul; Theresa Falls; Theresa Hickman; Byung-Geon Rhee; John C. Bell; David Kirn; Tae-Ho Hwang

JX-594 is a targeted and granulocyte-macrophage colony stimulating factor (GM-CSF) expressing oncolytic poxvirus designed to selectively replicate in and destroy cancer cells through viral oncolysis and tumor-specific immunity. In a phase 1 trial, JX-594 injection into hepatocellular carcinoma (HCC) was well-tolerated and associated with viral replication, decreased tumor perfusion, and tumor necrosis. We hypothesized that JX-594 and sorafenib, a small molecule inhibitor of B-raf and vascular endothelial growth factor receptor (VEGFR) approved for HCC, would have clinical benefit in combination given their demonstrated efficacy in HCC patients and their complementary mechanisms-of-action. HCC cell lines were uniformly sensitive to JX-594. Anti-raf kinase effects of concurrent sorafenib inhibited JX-594 replication in vitro, whereas sequential therapy was superior to either agent alone in murine tumor models. We therefore explored pilot safety and efficacy of JX-594 followed by sorafenib in three HCC patients. In all three patients, sequential treatment was (i) well-tolerated, (ii) associated with significantly decreased tumor perfusion, and (iii) associated with objective tumor responses (Choi criteria; up to 100% necrosis). HCC historical control patients on sorafenib alone at the same institutions had no objective tumor responses (0 of 15). Treatment of HCC with JX-594 followed by sorafenib has antitumoral activity, and JX-594 may sensitize tumors to subsequent therapy with VEGF/VEGFR inhibitors.


Cancer Research | 2013

Preventing Postoperative Metastatic Disease by Inhibiting Surgery-Induced Dysfunction in Natural Killer Cells

Lee-Hwa Tai; Christiano Tanese de Souza; Simon Bélanger; Lundi Ly; Almohanad A. Alkayyal; Jiqing Zhang; Julia Rintoul; Abhirami A. Ananth; Tiffany Lam; Caroline J. Breitbach; Theresa Falls; David Kirn; John C. Bell; Andrew P. Makrigiannis; Rebecca A. Auer

Natural killer (NK) cell clearance of tumor cell emboli following surgery is thought to be vital in preventing postoperative metastases. Using a mouse model of surgical stress, we transferred surgically stressed NK cells into NK-deficient mice and observed enhanced lung metastases in tumor-bearing mice as compared with mice that received untreated NK cells. These results establish that NK cells play a crucial role in mediating tumor clearance following surgery. Surgery markedly reduced NK cell total numbers in the spleen and affected NK cell migration. Ex vivo and in vivo tumor cell killing by NK cells were significantly reduced in surgically stressed mice. Furthermore, secreted tissue signals and myeloid-derived suppressor cell populations were altered in surgically stressed mice. Significantly, perioperative administration of oncolytic parapoxvirus ovis (ORFV) and vaccinia virus can reverse NK cell suppression, which correlates with a reduction in the postoperative formation of metastases. In human studies, postoperative cancer surgery patients had reduced NK cell cytotoxicity, and we show for the first time that oncolytic vaccinia virus markedly increases NK cell activity in patients with cancer. These data provide direct in vivo evidence that surgical stress impairs global NK cell function. Perioperative therapies aimed at enhancing NK cell function will reduce metastatic recurrence and improve survival in surgical cancer patients.


PLOS ONE | 2010

Enhancement of Vaccinia Virus Based Oncolysis with Histone Deacetylase Inhibitors

Heather MacTavish; Jean-Simon Diallo; Baocheng Huang; Marianne Stanford; Fabrice Le Boeuf; Naomi De Silva; Julie Cox; John Graydon Simmons; Tanya Guimond; Theresa Falls; J. Andrea McCart; Harry Atkins; Caroline J. Breitbach; David Kirn; Stephen H. Thorne; John C. Bell

Histone deacetylase inhibitors (HDI) dampen cellular innate immune response by decreasing interferon production and have been shown to increase the growth of vesicular stomatitis virus and HSV. As attenuated tumour-selective oncolytic vaccinia viruses (VV) are already undergoing clinical evaluation, the goal of this study is to determine whether HDI can also enhance the potency of these poxviruses in infection-resistant cancer cell lines. Multiple HDIs were tested and Trichostatin A (TSA) was found to potently enhance the spread and replication of a tumour selective vaccinia virus in several infection-resistant cancer cell lines. TSA significantly decreased the number of lung metastases in a syngeneic B16F10LacZ lung metastasis model yet did not increase the replication of vaccinia in normal tissues. The combination of TSA and VV increased survival of mice harbouring human HCT116 colon tumour xenografts as compared to mice treated with either agent alone. We conclude that TSA can selectively and effectively enhance the replication and spread of oncolytic vaccinia virus in cancer cells.


Annals of Surgery | 2013

Surgical stress promotes the development of cancer metastases by a coagulation-dependent mechanism involving natural killer cells in a murine model.

Rashmi Seth; Lee-Hwa Tai; Theresa Falls; Christiano Tanese de Souza; John C. Bell; Marc Carrier; Harold Atkins; Robin P. Boushey; Rebecca A. Auer

Objective:To determine whether the postoperative hypercoagulable state is responsible for the increase in metastases observed after surgery. Background:Surgery precipitates a hypercoagulable state and increases the formation of cancer metastases in animal models. Coagulation promotes metastases by facilitating the formation of microthrombi around tumor cell emboli (TCE), thereby inhibiting natural killer (NK) cell–mediated destruction. Methods:Mice underwent surgery preceded by tumor cell inoculation to establish pulmonary metastases in the presence or absence of various perioperative anticoagulants. Pulmonary TCE were quantified and characterized using fluorescently labeled fibrinogen and platelets. The role of NK cells was evaluated by repeating these experiments after antibody depletion in a genetically deficient strain and by adoptively transferring NK cells into NK-deficient mice. Results:Surgery resulted in a consistent and significant increase in metastases while a number of different anticoagulants and platelet depletion attenuated this effect. Impaired clearance of TCE from the lungs associated with an increase in peritumoral fibrin and platelet clot formation was observed in surgically stressed mice, but not in control mice or mice that received perioperative anticoagulation. The increase in TCE survival conferred by surgery and inhibited by perioperative anticoagulation was eliminated by the immunological or genetic depletion of NK cells. Adoptive transfer experiment confirms that surgery impairs NK cell function. Conclusions:Surgery promotes the formation of fibrin and platelet clots around TCE, thereby impairing NK cell–mediated tumor cell clearance, whereas perioperative anticoagulation attenuates this effect. Therapeutic interventions aimed at reducing peritumoral clot formation and enhancing NK cell function in the perioperative period will have important clinical implications in attenuating metastatic disease after cancer surgery.


Molecular Therapy | 2012

Harnessing Oncolytic Virus-mediated Antitumor Immunity in an Infected Cell Vaccine

Chantal G Lemay; Julia Rintoul; Agnieszka Kus; Jennifer M Paterson; Vanessa Garcia; Theresa Falls; Lisa Ferreira; Byram W. Bridle; David P. Conrad; Vera Tang; Jean-Simon Diallo; Rozanne Arulanandam; Fabrice Le Boeuf; Kenneth Garson; Barbara C. Vanderhyden; David F. Stojdl; Brian D. Lichty; Harold Atkins; Kelley Parato; John C. Bell; Rebecca C. Auer

Treatment of permissive tumors with the oncolytic virus (OV) VSV-Δ51 leads to a robust antitumor T-cell response, which contributes to efficacy; however, many tumors are not permissive to in vivo treatment with VSV-Δ51. In an attempt to channel the immune stimulatory properties of VSV-Δ51 and broaden the scope of tumors that can be treated by an OV, we have developed a potent oncolytic vaccine platform, consisting of tumor cells infected with VSV-Δ51. We demonstrate that prophylactic immunization with this infected cell vaccine (ICV) protected mice from subsequent tumor challenge, and expression of granulocyte-monocyte colony stimulating factor (GM-CSF) by the virus (VSVgm-ICV) increased efficacy. Immunization with VSVgm-ICV in the VSV-resistant B16-F10 model induced maturation of dendritic and natural killer (NK) cell populations. The challenge tumor is rapidly infiltrated by a large number of interferon γ (IFNγ)-producing T and NK cells. Finally, we demonstrate that this approach is robust enough to control the growth of established tumors. This strategy is broadly applicable because of VSVs extremely broad tropism, allowing nearly all cell types to be infected at high multiplicities of infection in vitro, where the virus replication kinetics outpace the cellular IFN response. It is also personalized to the unique tumor antigen(s) displayed by the cancer cell.

Collaboration


Dive into the Theresa Falls's collaboration.

Top Co-Authors

Avatar

John C. Bell

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jean-Simon Diallo

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Harold Atkins

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Fabrice Le Boeuf

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

David F. Stojdl

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina S. Ilkow

Ottawa Hospital Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge