Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naomi E. Pierce is active.

Publication


Featured researches published by Naomi E. Pierce.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Animals in a bacterial world, a new imperative for the life sciences

Margaret J. McFall-Ngai; Michael G. Hadfield; Thomas C. G. Bosch; Hannah V. Carey; Tomislav Domazet-Lošo; Angela E. Douglas; Nicole Dubilier; Gérard Eberl; Tadashi Fukami; Scott F. Gilbert; Ute Hentschel; Nicole King; Staffan Kjelleberg; Andrew H. Knoll; Natacha Kremer; Sarkis K. Mazmanian; Jessica L. Metcalf; Kenneth H. Nealson; Naomi E. Pierce; John F. Rawls; Ann H. Reid; Edward G. Ruby; Mary E. Rumpho; Jon G. Sanders; Diethard Tautz; Jennifer J. Wernegreen

In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal–bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal–bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.


Proceedings of the Royal Society of London Series B: Biological Sciences | 2005

Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers

Niklas Wahlberg; Michael F. Braby; Andrew V. Z. Brower; Rienk de Jong; Ming-Min Lee; Sören Nylin; Naomi E. Pierce; Felix A. H. Sperling; Roger Vila; Andrew D. Warren; Evgueni V. Zakharov

Phylogenetic relationships among major clades of butterflies and skippers have long been controversial, with no general consensus even today. Such lack of resolution is a substantial impediment to using the otherwise well studied butterflies as a model group in biology. Here we report the results of a combined analysis of DNA sequences from three genes and a morphological data matrix for 57 taxa (3258 characters, 1290 parsimony informative) representing all major lineages from the three putative butterfly super-families (Hedyloidea, Hesperioidea and Papilionoidea), plus out-groups representing other ditrysian Lepidoptera families. Recently, the utility of morphological data as a source of phylogenetic evidence has been debated. We present the first well supported phylogenetic hypothesis for the butterflies and skippers based on a total-evidence analysis of both traditional morphological characters and new molecular characters from three gene regions (COI, EF-1α and wingless). All four data partitions show substantial hidden support for the deeper nodes, which emerges only in a combined analysis in which the addition of morphological data plays a crucial role. With the exception of Nymphalidae, the traditionally recognized families are found to be strongly supported monophyletic clades with the following relationships: (Hesperiidae+(Papilionidae+(Pieridae+(Nymphalidae+(Lycaenidae+Riodinidae))))). Nymphalidae is recovered as a monophyletic clade but this clade does not have strong support. Lycaenidae and Riodinidae are sister groups with strong support and we suggest that the latter be given family rank. The position of Pieridae as the sister taxon to nymphalids, lycaenids and riodinids is supported by morphology and the EF-1α data but conflicted by the COI and wingless data. Hedylidae are more likely to be related to butterflies and skippers than geometrid moths and appear to be the sister group to Papilionoidea+Hesperioidea.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants

Jacob A. Russell; Corrie S. Moreau; Benjamin Goldman-Huertas; Mikiko K. Fujiwara; David J. Lohman; Naomi E. Pierce

Ants are a dominant feature of terrestrial ecosystems, yet we know little about the forces that drive their evolution. Recent findings illustrate that their diets range from herbivorous to predaceous, with “herbivores” feeding primarily on exudates from plants and sap-feeding insects. Persistence on these nitrogen-poor food sources raises the question of how ants obtain sufficient nutrition. To investigate the potential role of symbiotic microbes, we have surveyed 283 species from 18 of the 21 ant subfamilies using molecular techniques. Our findings uncovered a wealth of bacteria from across the ants. Notable among the surveyed hosts were herbivorous “turtle ants” from the related genera Cephalotes and Procryptocerus (tribe Cephalotini). These commonly harbored bacteria from ant-specific clades within the Burkholderiales, Pseudomonadales, Rhizobiales, Verrucomicrobiales, and Xanthomonadales, and studies of lab-reared Cephalotes varians characterized these microbes as symbiotic residents of ant guts. Although most of these symbionts were confined to turtle ants, bacteria from an ant-specific clade of Rhizobiales were more broadly distributed. Statistical analyses revealed a strong relationship between herbivory and the prevalence of Rhizobiales gut symbionts within ant genera. Furthermore, a consideration of the ant phylogeny identified at least five independent origins of symbioses between herbivorous ants and related Rhizobiales. Combined with previous findings and the potential for symbiotic nitrogen fixation, our results strongly support the hypothesis that bacteria have facilitated convergent evolution of herbivory across the ants, further implicating symbiosis as a major force in ant evolution.


Nature | 2004

The evolution of alternative parasitic life histories in large blue butterflies

Thomas D. Als; Roger Vila; Nikolai P. Kandul; David R. Nash; Shen-Horn Yen; Yu Feng Hsu; Andre A. Mignault; Jacobus J. Boomsma; Naomi E. Pierce

Large blue (Maculinea) butterflies are highly endangered throughout the Palaearctic region, and have been the focus of intense conservation research. In addition, their extraordinary parasitic lifestyles make them ideal for studies of life history evolution. Early instars consume flower buds of specific host plants, but later instars live in ant nests where they either devour the brood (predators), or are fed mouth-to-mouth by the adult ants (cuckoos). Here we present the phylogeny for the group, which shows that it is a monophyletic clade nested within Phengaris, a rare Oriental genus whose species have similar life histories. Cuckoo species are likely to have evolved from predatory ancestors. As early as five million years ago, two Maculinea clades diverged, leading to the different parasitic strategies seen in the genus today. Contrary to current belief, the two recognized cuckoo species show little genetic divergence and are probably a single ecologically differentiated species. On the other hand, some of the predatory morphospecies exhibit considerable genetic divergence and may contain cryptic species. These findings have important implications for conservation and reintroduction efforts.


Nature | 2007

Dating the origin of the Orchidaceae from a fossil orchid with its pollinator

Santiago R. Ramírez; Barbara Gravendeel; Rodrigo B. Singer; Charles R. Marshall; Naomi E. Pierce

Since the time of Darwin, evolutionary biologists have been fascinated by the spectacular adaptations to insect pollination exhibited by orchids. However, despite being the most diverse plant family on Earth, the Orchidaceae lack a definitive fossil record and thus many aspects of their evolutionary history remain obscure. Here we report an exquisitely preserved orchid pollinarium (of Meliorchis caribea gen. et sp. nov.) attached to the mesoscutellum of an extinct stingless bee, Proplebeia dominicana, recovered from Miocene amber in the Dominican Republic, that is 15–20 million years (Myr) old. This discovery constitutes both the first unambiguous fossil of Orchidaceae and an unprecedented direct fossil observation of a plant–pollinator interaction. By applying cladistic methods to a morphological character matrix, we resolve the phylogenetic position of M. caribea within the extant subtribe Goodyerinae (subfamily Orchidoideae). We use the ages of other fossil monocots and M. caribea to calibrate a molecular phylogenetic tree of the Orchidaceae. Our results indicate that the most recent common ancestor of extant orchids lived in the Late Cretaceous (76–84 Myr ago), and also suggest that the dramatic radiation of orchids began shortly after the mass extinctions at the K/T boundary. These results further support the hypothesis of an ancient origin for Orchidaceae.


Proceedings of the Royal Society of London B: Biological Sciences | 1998

A castration parasite of an ant–plant mutualism

Douglas W. Yu; Naomi E. Pierce

Exploring the factors governing the maintenance and breakdown of cooperation between mutualists is an intriguing and enduring problem for evolutionary ecology, and symbioses between ants and plants can provide useful experimental models for such studies. Hundreds of tropical plant species have evolved structures to house and feed ants, and these ant–plant symbioses have long been considered classic examples of mutualism. Here, we report that the primary ant symbiont, Allomerus cf. demerarae, of the most abundant ant–plant found in south–east Peru, Cordia nodosa Lam., castrates its host plant. Allomerus workers protect new leaves and their associated domatia from herbivory, but destroy flowers, reducing fruit production to zero in most host plants. Castrated plants occupied by Allomerus provide more domatia for their associated ants than plants occupied by three species of Azteca ants that do not castrate their hosts. Allomerus colonies in larger plants have higher fecundity. As a consequence, Allomerus appears to benefit from its castration behaviour, to the detriment of C. nodosa. The C. nodosa–ant system exhibits none of the retaliatory or filtering mechanisms shown to stabilize cheating in other cooperative systems, and appears to persist because some of the plants, albeit a small minority, are inhabited by the three species of truly mutualistic Azteca ants.


Nature | 2005

Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies

Vladimir A. Lukhtanov; Nikolai P. Kandul; Joshua B. Plotkin; Alexander V. Dantchenko; David Haig; Naomi E. Pierce

The reinforcement model of evolution argues that natural selection enhances pre-zygotic isolation between divergent populations or species by selecting against unfit hybrids or costly interspecific matings. Reinforcement is distinguished from other models that consider the formation of reproductive isolation to be a by-product of divergent evolution. Although theory has shown that reinforcement is a possible mechanism that can lead to speciation, empirical evidence has been sufficiently scarce to raise doubts about the importance of reinforcement in nature. Agrodiaetus butterflies (Lepidoptera: Lycaenidae) exhibit unusual variability in chromosome number. Whereas their genitalia and other morphological characteristics are largely uniform, different species vary considerably in male wing colour, and provide a model system to study the role of reinforcement in speciation. Using comparative phylogenetic methods, we show that the sympatric distribution of 15 relatively young sister taxa of Agrodiaetus strongly correlates with differences in male wing colour, and that this pattern is most likely the result of reinforcement. We find little evidence supporting sympatric speciation: rather, in Agrodiaetus, karyotypic changes accumulate gradually in allopatry, prompting reinforcement when karyotypically divergent races come into contact.


Behavioral Ecology and Sociobiology | 1987

The costs and benefits of cooperation between the Australian lycaenid butterfly, Jalmenus evagoras, and its attendant ants

Naomi E. Pierce; Roger Kitching; R. C. Buckley; M. F. J. Taylor; K. F. Benbow

SummaryThe larvae and pupae of the Australian lycaenid butterfly, Jalmenus evagoras associate mutualistically with ants in the genus Iridomyrmex. Four ant exclusion experiments in three field sites demonstrated that predation and parasitism of J. evagoras are so intense that individuals deprived of their attendant ants are unlikely to survive. Larvae and pupae of J. evagoras aggregate, and the mean number of attendant ants per individual increases with larval age and decreases with group size. Field observations showed that young larvae could gain more attendant ants per individual by joining the average size group of about 4 larvae than by foraging alone. Aggregation behaviour is influenced by ant attendance: young larvae and pupating fifth instars aggregated significantly more often on plants with ants than on plants where ants had been excluded. In return for tending and protecting the larvae, ants were rewarded by food secretions that can amount to as much as 409 mg dry biomass from a single host plant containing 62 larvae and pupae of J. evagoras over a 24 h period. Larval development in the laboratory lasted approximately a month, and larvae that were tended by ants developed almost 5 days faster than larvae that were not tended. However, tended individuals, particularly females, pupated at a significantly lower weight than their untended counterparts, and the adults that eclosed from these pupae were also lighter and smaller. On average, pupae that were tended by ants lost 25% more weight than untended pupae, and in contrast with larvae, they took longer to eclose than pupae that were not tended. These experimental results are discussed in terms of costs and benefits of association for both partners, and of aggregation for the lycaenids.


Behavioral Ecology and Sociobiology | 1985

The influence of ants on host plant selection by Jalmenus evagoras, a myrmecophilous lycaenid butterfly

Naomi E. Pierce; Mark A. Elgar

Summary(1) Females of the myrmecophilous lycaenid butterfly, Jalmenus evagoras are far more likely to lay eggs on plants that contain their attendant ants, Iridomyrmex sp. 25 than on plants without ants, although the clutch sizes of individual egg masses laid in either situation is the same. (2) Ovipositing females respond to the presence or absence of ants before they alight on a potential food plant. Once they have landed, they are equally likely to ley eggs whether or not they encounter ants. (3) Ovipositing females prefer to lay eggs on plants that contain ant tended homopterans than on plants that contain only a few foraging ants. The presence of ant tended homopterans can act as a strong stimulus to induce females to lay eggs on plant species that differ from their original host species. (4) Ant dependent oviposition behavior has been described or suggested in 46 species of lycaenid and one riodinid. In general, the more dependent a species is upon ants for either food or protection, the more likely it is to use ants as cues in oviposition. Prominent characteristics of lycaenids that have ant dependent oviposition are described and discussed. (5) Myrmecophilous lycaenids that may use ants as cues in oviposition feed on a significantly wider range of plants than non-myrmecophilous lycaenids. Possible reasons for this pattern and its ecological significance are discussed.


Evolution | 2009

SPECIALIZATION AND GEOGRAPHIC ISOLATION AMONG WOLBACHIA SYMBIONTS FROM ANTS AND LYCAENID BUTTERFLIES

Jacob A. Russell; Benjamin Goldman-Huertas; Corrie S. Moreau; Laura Baldo; Julie K. Stahlhut; John H. Werren; Naomi E. Pierce

Wolbachia are the most prevalent and influential bacteria described among the insects to date. But despite their significance, we lack an understanding of their evolutionary histories. To describe the evolution of symbioses between Wolbachia and their hosts, we surveyed global collections of two diverse families of insects, the ants and lycaenid butterflies. In total, 54 Wolbachia isolates were typed using a Multi Locus Sequence Typing (MLST) approach, in which five unlinked loci were sequenced and analyzed to decipher evolutionary patterns. AMOVA and phylogenetic analyses demonstrated that related Wolbachia commonly infect related hosts, revealing a pattern of host association that was strongest among strains from the ants. A review of the literature indicated that horizontal transfer is most successful when Wolbachia move between related hosts, suggesting that patterns of host association are driven by specialization on a common physiological background. Aside from providing the broadest and strongest evidence to date for Wolbachia specialization, our findings also reveal that strains from New World ants differ markedly from those in ants from other locations. We, therefore, conclude that both geographic and phylogenetic barriers have promoted evolutionary divergence among these influential symbionts.

Collaboration


Dive into the Naomi E. Pierce's collaboration.

Top Co-Authors

Avatar

Jon G. Sanders

University of California

View shared research outputs
Top Co-Authors

Avatar

Douglas W. Yu

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Lohman

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corrie S. Moreau

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge