Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon G. Sanders is active.

Publication


Featured researches published by Jon G. Sanders.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Animals in a bacterial world, a new imperative for the life sciences

Margaret J. McFall-Ngai; Michael G. Hadfield; Thomas C. G. Bosch; Hannah V. Carey; Tomislav Domazet-Lošo; Angela E. Douglas; Nicole Dubilier; Gérard Eberl; Tadashi Fukami; Scott F. Gilbert; Ute Hentschel; Nicole King; Staffan Kjelleberg; Andrew H. Knoll; Natacha Kremer; Sarkis K. Mazmanian; Jessica L. Metcalf; Kenneth H. Nealson; Naomi E. Pierce; John F. Rawls; Ann H. Reid; Edward G. Ruby; Mary E. Rumpho; Jon G. Sanders; Diethard Tautz; Jennifer J. Wernegreen

In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal–bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal–bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.


Nature Communications | 2015

Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores

Jon G. Sanders; Annabel C. Beichman; Joe Roman; Jarrod J. Scott; David Emerson; James J. McCarthy; Peter R. Girguis

Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These similarities likely reflect a shared role for fermentative metabolisms despite a shift in primary carbon sources from plant-derived to animal-derived polysaccharides, such as chitin. In contrast, protein catabolism and essential amino acid synthesis pathways in baleen whale microbiomes more closely resemble those of terrestrial carnivores. Our results demonstrate that functional attributes of the microbiome can vary independently even given an animal-derived diet, illustrating how diet and evolutionary history combine to shape microbial diversity in the mammalian gut.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Evidence for the role of endosymbionts in regional-scale habitat partitioning by hydrothermal vent symbioses

Roxanne A. Beinart; Jon G. Sanders; Baptiste Faure; Sean P. Sylva; Raymond W. Lee; Erin L. Becker; Amy Gartman; George W. Luther; Jeffrey S. Seewald; Charles R. Fisher; Peter R. Girguis

Deep-sea hydrothermal vents are populated by dense communities of animals that form symbiotic associations with chemolithoautotrophic bacteria. To date, our understanding of which factors govern the distribution of host/symbiont associations (or holobionts) in nature is limited, although host physiology often is invoked. In general, the role that symbionts play in habitat utilization by vent holobionts has not been thoroughly addressed. Here we present evidence for symbiont-influenced, regional-scale niche partitioning among symbiotic gastropods (genus Alviniconcha) in the Lau Basin. We extensively surveyed Alviniconcha holobionts from four vent fields using quantitative molecular approaches, coupled to characterization of high-temperature and diffuse vent-fluid composition using gastight samplers and in situ electrochemical analyses, respectively. Phylogenetic analyses exposed cryptic host and symbiont diversity, revealing three distinct host types and three different symbiont phylotypes (one ε-proteobacteria and two γ-proteobacteria) that formed specific associations with one another. Strikingly, we observed that holobionts with ε-proteobacterial symbionts were dominant at the northern fields, whereas holobionts with γ-proteobacterial symbionts were dominant in the southern fields. This pattern of distribution corresponds to differences in the vent geochemistry that result from deep subsurface geological and geothermal processes. We posit that the symbionts, likely through differences in chemolithoautotrophic metabolism, influence niche utilization among these holobionts. The data presented here represent evidence linking symbiont type to habitat partitioning among the chemosynthetic symbioses at hydrothermal vents and illustrate the coupling between subsurface geothermal processes and niche availability.


MicrobiologyOpen | 2014

DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

Benjamin E. R. Rubin; Jon G. Sanders; Jarrad T. Hampton-Marcell; Sarah M. Owens; Jack A. Gilbert; Corrie S. Moreau

The recent development of methods applying next‐generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illumina 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect‐associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.


Nature Communications | 2017

Unraveling the processes shaping mammalian gut microbiomes over evolutionary time

Mathieu Groussin; Florent Mazel; Jon G. Sanders; Chris S. Smillie; Sébastien Lavergne; Wilfried Thuiller; Eric J. Alm

Whether mammal–microbiome interactions are persistent and specific over evolutionary time is controversial. Here we show that host phylogeny and major dietary shifts have affected the distribution of different gut bacterial lineages and did so on vastly different bacterial phylogenetic resolutions. Diet mostly influences the acquisition of ancient and large microbial lineages. Conversely, correlation with host phylogeny is mostly seen among more recently diverged bacterial lineages, consistent with processes operating at similar timescales to host evolution. Considering microbiomes at appropriate phylogenetic scales allows us to model their evolution along the mammalian tree and to infer ancient diets from the predicted microbiomes of mammalian ancestors. Phylogenetic analyses support co-speciation as having a significant role in the evolution of mammalian gut microbiome compositions. Highly co-speciating bacterial genera are also associated with immune diseases in humans, laying a path for future studies that probe these co-speciating bacteria for signs of co-evolution.


The ISME Journal | 2013

Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts

Jon G. Sanders; Roxanne A. Beinart; Frank J. Stewart; Edward F. DeLong; Peter R. Girguis

Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host–symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts’ metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts’ interaction with regional-scale differences in geochemistry.


mSystems | 2017

Balance Trees Reveal Microbial Niche Differentiation

James T. Morton; Jon G. Sanders; Robert A. Quinn; Daniel McDonald; Antonio González; Yoshiki Vázquez-Baeza; Jose A. Navas-Molina; Se Jin Song; Jessica L. Metcalf; Embriette R. Hyde; Manuel E. Lladser; Pieter C. Dorrestein; Rob Knight

By explicitly accounting for the compositional nature of 16S rRNA gene data through the concept of balances, balance trees yield novel biological insights into niche differentiation. The software to perform this analysis is available under an open-source license and can be obtained at https://github.com/biocore/gneiss . ABSTRACT Advances in sequencing technologies have enabled novel insights into microbial niche differentiation, from analyzing environmental samples to understanding human diseases and informing dietary studies. However, identifying the microbial taxa that differentiate these samples can be challenging. These issues stem from the compositional nature of 16S rRNA gene data (or, more generally, taxon or functional gene data); the changes in the relative abundance of one taxon influence the apparent abundances of the others. Here we acknowledge that inferring properties of individual bacteria is a difficult problem and instead introduce the concept of balances to infer meaningful properties of subcommunities, rather than properties of individual species. We show that balances can yield insights about niche differentiation across multiple microbial environments, including soil environments and lung sputum. These techniques have the potential to reshape how we carry out future ecological analyses aimed at revealing differences in relative taxonomic abundances across different samples. IMPORTANCE By explicitly accounting for the compositional nature of 16S rRNA gene data through the concept of balances, balance trees yield novel biological insights into niche differentiation. The software to perform this analysis is available under an open-source license and can be obtained at https://github.com/biocore/gneiss . Author Video: An author video summary of this article is available.


Cladistics | 2010

Program note: Cladescan, a program for automated phylogenetic sensitivity analysis

Jon G. Sanders

Examination of trees for the presence of particular nodes is a fundamental aspect of systematics, and is the basis of phylogenetic sensitivity analysis, but becomes unwieldy when performed manually for complex nodes or over large numbers of trees. The program Cladescan is presented here as a stand‐alone application to facilitate the detection of nodes in such situations. Cladescan includes features useful for phylogenetic sensitivity analysis, such as automatic generation of “Navajo rug” sensitivity plots. In addition, researchers may find it useful for general comparisons among large data sets.


Integrative and Comparative Biology | 2017

The Effects of Captivity on the Mammalian Gut Microbiome.

Valerie J. McKenzie; Se Jin Song; Frédéric Delsuc; Tiffany L. Prest; Angela M. Oliverio; Timothy M. Korpita; Alexandra Alexiev; Katherine R. Amato; Jessica L. Metcalf; Martín M. Kowalewski; Nico L. Avenant; Andrés Link; Anthony Di Fiore; Andaine Seguin-Orlando; Claudia Feh; Ludovic Orlando; Joseph R. Mendelson; Jon G. Sanders; Rob Knight

Synopsis Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host.


Nature Reviews Microbiology | 2018

Best practices for analysing microbiomes

Rob Knight; Alison Vrbanac; Bryn C. Taylor; Alexander A. Aksenov; Chris Callewaert; Justine W. Debelius; Antonio González; Tomasz Kosciolek; Laura-Isobel McCall; Daniel McDonald; Alexey V. Melnik; James T. Morton; Jose Navas; Robert A. Quinn; Jon G. Sanders; Austin D. Swafford; Luke R. Thompson; Anupriya Tripathi; Zhenjiang Zech Xu; Jesse Zaneveld; Qiyun Zhu; J. Gregory Caporaso; Pieter C. Dorrestein

Complex microbial communities shape the dynamics of various environments, ranging from the mammalian gastrointestinal tract to the soil. Advances in DNA sequencing technologies and data analysis have provided drastic improvements in microbiome analyses, for example, in taxonomic resolution, false discovery rate control and other properties, over earlier methods. In this Review, we discuss the best practices for performing a microbiome study, including experimental design, choice of molecular analysis technology, methods for data analysis and the integration of multiple omics data sets. We focus on recent findings that suggest that operational taxonomic unit-based analyses should be replaced with new methods that are based on exact sequence variants, methods for integrating metagenomic and metabolomic data, and issues surrounding compositional data analysis, where advances have been particularly rapid. We note that although some of these approaches are new, it is important to keep sight of the classic issues that arise during experimental design and relate to research reproducibility. We describe how keeping these issues in mind allows researchers to obtain more insight from their microbiome data sets.Complex microbial communities shape the dynamics of various environments. In this Review, Knight and colleagues discuss the best practices for performing a microbiome study, including experimental design, choice of molecular analysis technology, methods for data analysis and the integration of multiple omics data sets.

Collaboration


Dive into the Jon G. Sanders's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob Knight

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corrie S. Moreau

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Se Jin Song

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge