Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naomi Pode-Shakked is active.

Publication


Featured researches published by Naomi Pode-Shakked.


Development | 2010

The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex

Max Werth; Katharina Walentin; Annekatrin Aue; Jörg Schönheit; Anne Wuebken; Naomi Pode-Shakked; Larissa Vilianovitch; Bettina Erdmann; Benjamin Dekel; Michael Bader; Jonathan Barasch; Frank Rosenbauer; Friedrich C. Luft; Kai M. Schmidt-Ott

Differentiation of epithelial cells and morphogenesis of epithelial tubes or layers is closely linked with the establishment and remodeling of the apical junctional complex, which includes adherens junctions and tight junctions. Little is known about the transcriptional control of apical junctional complex components. Here, we show that the transcription factor grainyhead-like 2 (Grhl2), an epithelium-specific mammalian homolog of Drosophila Grainyhead, is essential for adequate expression of the adherens junction gene E-cadherin and the tight junction gene claudin 4 (Cldn4) in several types of epithelia, including gut endoderm, surface ectoderm and otic epithelium. We have generated Grhl2 mutant mice to demonstrate defective molecular composition of the apical junctional complex in these compartments that coincides with the occurrence of anterior and posterior neural tube defects. Mechanistically, we show that Grhl2 specifically associates with cis-regulatory elements localized at the Cldn4 core promoter and within intron 2 of the E-cadherin gene. Cldn4 promoter activity in epithelial cells is crucially dependent on the availability of Grhl2 and on the integrity of the Grhl2-associated cis-regulatory element. At the E-cadherin locus, the intronic Grhl2-associated cis-regulatory region contacts the promoter via chromatin looping, while loss of Grhl2 leads to a specific decrease of activating histone marks at the E-cadherin promoter. Together, our data provide evidence that Grhl2 acts as a target gene-associated transcriptional activator of apical junctional complex components and, thereby, crucially participates in epithelial differentiation.


Journal of Cellular and Molecular Medicine | 2009

Developmental tumourigenesis: NCAM as a putative marker for the malignant renal stem/progenitor cell population

Naomi Pode-Shakked; Sally Metsuyanim; Eithan Rom-Gross; Yoram Mor; Eduard Fridman; Itamar Goldstein; Ninette Amariglio; Gideon Rechavi; Gilmor Keshet; Benjamin Dekel

During development, renal stem cells reside in the nephrogenic blastema. Wilms’ tumour (WT), a common childhood malignancy, is suggested to arise from the nephrogenic blastema that undergoes partial differentiation and as such is an attractive model to study renal stem cells leading to cancer initiation and maintenance. Previously we have made use of blastema‐enriched WT stem‐like xenografts propagated in vivo to define a ‘WT‐stem’ signature set, which includes cell surface markers convenient for cell isolation (frizzled homolog 2 [Drosophila] – FZD2, FZD7, G‐protein coupled receptor 39, activin receptor type 2B, neural cell adhesion molecule – NCAM). We show by fluorescence‐activated cell sorting analysis of sphere‐forming heterogeneous primary WT cultures that most of these markers and other stem cell surface antigens (haematopoietic, CD133, CD34, c‐Kit; mesenchymal, CD105, CD90, CD44; cancer, CD133, MDR1; hESC, CD24 and putative renal, cadherin 11), are expressed in WT cell sub‐populations in varying levels. Of all markers, NCAM, CD133 and FZD7 were constantly detected in low‐to‐moderate portions likely to contain the stem cell fraction. Sorting according to FZD7 resulted in extensive cell death, while sorted NCAM and CD133 cell fractions were subjected to clonogenicity assays and quantitative RT‐PCR analysis, exclusively demonstrating the NCAM+ fraction as highly clonogenic, overexpressing the WT ‘stemness’ genes and topoisomerase2A (TOP2A), a bad prognostic marker for WT. Moreover, treatment of WT cells with the topoisomerase inhibitors, Etoposide and Irinotecan resulted in down‐regulation of TOP2A along with NCAM and WT1. Thus, we suggest NCAM as a marker for the WT progenitor cell population. These findings provide novel insights into the cellular hierarchy of WT, having possible implications for future therapeutic options.


Pediatric Nephrology | 2011

Wilms tumor--a renal stem cell malignancy?

Naomi Pode-Shakked; Benjamin Dekel

Wilms’ tumor (WT; nephroblastoma) is the most common pediatric renal malignancy and rated fourth in overall incidence among childhood cancers. It is viewed as a prototype of differentiation failure in human neoplasia as it recapitulates the histology of the nephrogenic zone of the growing fetal kidney. The cellular origin of WT is unclear. However, recent genomic, genetic and epigenetic studies point to an early renal stem/progenitor cell that undergoes malignant transformation as the source for WT. In this context, classical WT shares genes and pathways activated in progenitors committed to the renal lineage. However, direct proof and characterization of the WT initiating cell have remained elusive. Novel methodologies recently adopted from the cancer stem cell scientific field, including the analysis of sorted single human tumor cells, have been applied to WT. These have enabled the identification of cell sub-populations that show similarities—in terms of molecular marker expression—to human fetal kidney progenitors and are, therefore, likely to be derivatives of the same lineage. Further elucidation of the WT cancer stem cell or the cell of origin in human tumors and in transgenic mouse models that generate murine tumors may not only provide novel therapeutic targets but also shed light on the normal kidney stem cell.


Scientific Reports | 2016

Dissecting Stages of Human Kidney Development and Tumorigenesis with Surface Markers Affords Simple Prospective Purification of Nephron Stem Cells

Naomi Pode-Shakked; Oren Pleniceanu; Rotem Gershon; Rachel Shukrun; Itamar Kanter; Efrat Bucris; Ben Pode-Shakked; Gal Tam; Hadar Tam; Revital Caspi; Sara Pri-Chen; Einav Vax; Guy Katz; Dorit Omer; Orit Harari-Steinberg; Tomer Kalisky; Benjamin Dekel

When assembling a nephron during development a multipotent stem cell pool becomes restricted as differentiation ensues. A faulty differentiation arrest in this process leads to transformation and initiation of a Wilms’ tumor. Mapping these transitions with respective surface markers affords accessibility to specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark human renal progenitor populations. Herein, using cell sorting, RNA sequencing, in vitro studies with serum-free media and in vivo xenotransplantation we demonstrate a sequential map that links human kidney development and tumorigenesis; In nephrogenesis, NCAM1+CD133− marks SIX2+ multipotent renal stem cells transiting to NCAM1+CD133+ differentiating segment-specific SIX2− epithelial progenitors and NCAM1−CD133+ differentiated nephron cells. In tumorigenesis, NCAM1+CD133− marks SIX2+ blastema that includes the ALDH1+ WT cancer stem/initiating cells, while NCAM1+CD133+ and NCAM1−CD133+ specifying early and late epithelial differentiation, are severely restricted in tumor initiation capacity and tumor self-renewal. Thus, negative selection for CD133 is required for defining NCAM1+ nephron stem cells in normal and malignant nephrogenesis.


Stem cell reports | 2014

Wilms’ Tumor Blastemal Stem Cells Dedifferentiate to Propagate the Tumor Bulk

Rachel Shukrun; Naomi Pode-Shakked; Oren Pleniceanu; Dorit Omer; Einav Vax; Eyal Peer; Sara Pri-Chen; Jasmine Jacob; Qianghua Hu; Orit Harari-Steinberg; Vicki Huff; Benjamin Dekel

Summary An open question remains in cancer stem cell (CSC) biology whether CSCs are by definition at the top of the differentiation hierarchy of the tumor. Wilms’ tumor (WT), composed of blastema and differentiated renal elements resembling the nephrogenic zone of the developing kidney, is a valuable model for studying this question because early kidney differentiation is well characterized. WT neural cell adhesion molecule 1-positive (NCAM1+) aldehyde dehydrogenase 1-positive (ALDH1+) CSCs have been recently isolated and shown to harbor early renal progenitor traits. Herein, by generating pure blastema WT xenografts, composed solely of cells expressing the renal developmental markers SIX2 and NCAM1, we surprisingly show that sorted ALDH1+ WT CSCs do not correspond to earliest renal stem cells. Rather, gene expression and proteomic comparative analyses disclose a cell type skewed more toward epithelial differentiation than the bulk of the blastema. Thus, WT CSCs are likely to dedifferentiate to propagate WT blastema.


Nephron Physiology | 2011

Familial Autosomal Recessive Renal Tubular Acidosis: Importance of Early Diagnosis

Asaf Vivante; Danny Lotan; Naomi Pode-Shakked; Daniel Landau; Peter Svec; Sheela Nampoothiri; Ishwar C. Verma; Abdulsalam Abu-Libdeh; Detlef Bockenhauer; Benjamin Dekel; Yair Anikster

Background and Aims: Untreated renal tubular acidosis (RTA) can result in severe complications. We reviewed the clinical features of patients with mutations in two genes causing RTA and evaluated their developmental expression assuming that timing, symptom severity and complications may be related to its occurrence. Methods: Clinical data from 16 patients with RTA due to mutations in either ATP6V1B1 or CAII were retrospectively reviewed. Both genes’ localization and expression pattern in the developing human kidney were analyzed by real-time polymerase chain reaction and immunostaining. Results: RTA-presenting symptoms were non-specific. Patients with mutations in ATP6V1B1 had earlier presentation (4.9 vs. 11 months, p < 0.041) and longer time to diagnosis than patients with CAII mutations (5.8 vs. 57 months, p < 0.01). Patients with ATP6V1B1 mutations were more likely to develop chronic kidney disease than those with CAII mutations (follow-up GFR values: 89 vs. 110 ml/min/1.73 m2, respectively, p < 0.017), probably secondary to nephrocalcinosis. Both ATP6V1B1 and CAII were expressed early during human nephrogenesis, with relatively higher transcript levels of ATP6V1B1. Conclusions: There is considerable delay in establishing a diagnosis of both types of RTA, supporting the need for earlier biochemical investigation. RTA due to ATP6V1B1 mutations is associated with mild progressive loss of kidney function.


Stem cell reports | 2017

Evidence of In Vitro Preservation of Human Nephrogenesis at the Single-Cell Level

Naomi Pode-Shakked; Rotem Gershon; Gal Tam; Dorit Omer; Yehudit Gnatek; Itamar Kanter; Sarit Oriel; Guy Katz; Orit Harari-Steinberg; Tomer Kalisky; Benjamin Dekel

Summary During nephrogenesis, stem/progenitor cells differentiate and give rise to early nephron structures that segment to proximal and distal nephron cell types. Previously, we prospectively isolated progenitors from human fetal kidney (hFK) utilizing a combination of surface markers. However, upon culture nephron progenitors differentiated and could not be robustly maintained in vitro. Here, by culturing hFK in a modified medium used for in vitro growth of mouse nephron progenitors, and by dissection of NCAM+/CD133− progenitor cells according to EpCAM expression (NCAM+/CD133−/EpCAM−, NCAM+/CD133−/EpCAMdim, NCAM+/CD133−/EpCAMbright), we show at single-cell resolution a preservation of uninduced and induced cap mesenchyme as well as a transitioning mesenchymal-epithelial state. Concomitantly, differentiating and differentiated epithelial lineages are also maintained. In vitro expansion of discrete stages of early human nephrogenesis in nephron stem cell cultures may be used for drug screening on a full repertoire of developing kidney cells and for prospective isolation of mesenchymal or epithelial renal lineages for regenerative medicine.


Embo Molecular Medicine | 2017

PPARG is central to the initiation and propagation of human angiomyolipoma, suggesting its potential as a therapeutic target

Oren Pleniceanu; Racheli Shukrun; Dorit Omer; Einav Vax; Itamar Kanter; Klaudyna Dziedzic; Naomi Pode-Shakked; Michal Mark‐Daniei; Sara Pri-Chen; Yehudit Gnatek; Hadas Alfandary; Nira Varda-Bloom; Dekel D. Bar-Lev; Naomi Bollag; Rachel Shtainfeld; Leah Armon; Achia Urbach; Tomer Kalisky; Arnon Nagler; Orit Harari-Steinberg; Jack L. Arbiser; Benjamin Dekel

Angiomyolipoma (AML), the most common benign renal tumor, can result in severe morbidity from hemorrhage and renal failure. While mTORC1 activation is involved in its growth, mTORC1 inhibitors fail to eradicate AML, highlighting the need for new therapies. Moreover, the identity of the AML cell of origin is obscure. AML research, however, is hampered by the lack of in vivo models. Here, we establish a human AML‐xenograft (Xn) model in mice, recapitulating AML at the histological and molecular levels. Microarray analysis demonstrated tumor growth in vivo to involve robust PPARγ‐pathway activation. Similarly, immunostaining revealed strong PPARγ expression in human AML specimens. Accordingly, we demonstrate that while PPARγ agonism accelerates AML growth, PPARγ antagonism is inhibitory, strongly suppressing AML proliferation and tumor‐initiating capacity, via a TGFB‐mediated inhibition of PDGFB and CTGF. Finally, we show striking similarity between AML cell lines and mesenchymal stem cells (MSCs) in terms of antigen and gene expression and differentiation potential. Altogether, we establish the first in vivo human AML model, which provides evidence that AML may originate in a PPARγ‐activated renal MSC lineage that is skewed toward adipocytes and smooth muscle and away from osteoblasts, and uncover PPARγ as a regulator of AML growth, which could serve as an attractive therapeutic target.


Molecular Cancer Therapeutics | 2017

Wilms Tumor NCAM-Expressing Cancer Stem Cells as Potential Therapeutic Target for Polymeric Nanomedicine

Ela Markovsky; Einav Vax; Dikla Ben-Shushan; Anat Eldar-Boock; Rachel Shukrun; Eilam Yeini; Iris Barshack; Revital Caspi; Orit Harari-Steinberg; Naomi Pode-Shakked; Benjamin Dekel; Ronit Satchi-Fainaro

Cancer stem cells (CSC) form a specific population within the tumor that has been shown to have self-renewal and differentiation properties, increased ability to migrate and form metastases, and increased resistance to chemotherapy. Consequently, even a small number of cells remaining after therapy can repopulate the tumor and cause recurrence of the disease. CSCs in Wilms tumor, a pediatric renal cancer, were previously shown to be characterized by neural cell adhesion molecule (NCAM) expression. Therefore, NCAM provides a specific biomarker through which the CSC population in this tumor can be targeted. We have recently developed an NCAM-targeted nanosized conjugate of paclitaxel bound to a biodegradable polyglutamic acid polymer. In this work, we examined the ability of the conjugate to inhibit Wilms tumor by targeting the NCAM-expressing CSCs. Results show that the conjugate selectively depleted the CSC population of the tumors and effectively inhibited tumor growth without causing toxicity. We propose that the NCAM-targeted conjugate could be an effective therapeutic for Wilms tumor. Mol Cancer Ther; 16(11); 2462–72. ©2017 AACR.


European Journal of Medical Genetics | 2015

A novel mutation in the C7orf11 gene causes nonphotosensitive trichothiodystrophy in a multiplex highly consanguineous kindred.

Ben Pode-Shakked; Dina Marek-Yagel; Shoshana Greenberger; Naomi Pode-Shakked; Elon Pras; Aviv Barzilai; Saeed Yassin; Yechezkel Sidi; Yair Anikster

Trichothiodystrophy (TTD), also known as sulfur-deficient brittle hair syndrome, is a rare autosomal recessive multisystem disorder, which manifests with brittle hair, mental retardation, ichthyosis and decreased fertility. Mutations in the TTDN1 (C7orf11) gene have been shown to cause a nonphotosensitive type of trichothiodystrophy. We report of a 19 years old male, born to consanguineous parents of Arab-Muslim descent, who presented due to severe renal failure, but exhibited additional unique features, including developmental delay, mental retardation, splenomegaly, pancytopenia, hypogonadism and brittle hair. Following the clinical diagnosis of nonphotosensitive TTD, sequencing of the coding exons of C7orf11 was performed and revealed the patient to be homozygous for a novel c.505dupA mutation. As the severe renal failure following which the proband was referred to our care is not typically characteristic of this disorder, its significance is discussed. Molecular diagnosis of this highly affected family should enable genetic counseling and prenatal diagnosis for future pregnancies.

Collaboration


Dive into the Naomi Pode-Shakked's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge