Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orit Harari-Steinberg is active.

Publication


Featured researches published by Orit Harari-Steinberg.


Cell Reports | 2014

In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration.

Yuval Rinkevich; Daniel T. Montoro; Humberto Contreras-Trujillo; Orit Harari-Steinberg; Aaron M. Newman; Jonathan M. Tsai; Xinhong Lim; Renee Van-Amerongen; Angela N. Bowman; Michael Januszyk; Oren Pleniceanu; Roel Nusse; Michael T. Longaker; Irving L. Weissman; Benjamin Dekel

The mechanism and magnitude by which the mammalian kidney generates and maintains its proximal tubules, distal tubules, and collecting ducts remain controversial. Here, we use long-term in vivo genetic lineage tracing and clonal analysis of individual cells from kidneys undergoing development, maintenance, and regeneration. We show that the adult mammalian kidney undergoes continuous tubulogenesis via expansions of fate-restricted clones. Kidneys recovering from damage undergo tubulogenesis through expansions of clones with segment-specific borders, and renal spheres developing in vitro from individual cells maintain distinct, segment-specific fates. Analysis of mice derived by transfer of color-marked embryonic stem cells (ESCs) into uncolored blastocysts demonstrates that nephrons are polyclonal, developing from expansions of singly fated clones. Finally, we show that adult renal clones are derived from Wnt-responsive precursors, and their tracing in vivo generates tubules that are segment specific. Collectively, these analyses demonstrate that fate-restricted precursors functioning as unipotent progenitors continuously maintain and self-preserve the mouse kidney throughout life.


Embo Molecular Medicine | 2013

Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease.

Orit Harari-Steinberg; Sally Metsuyanim; Dorit Omer; Yehudit Gnatek; Rotem Gershon; Sara Pri-Chen; Derya D. Ozdemir; Yaniv Lerenthal; Tzahi Noiman; Herzel Ben-Hur; Zvi Vaknin; David Schneider; Bruce J. Aronow; Ronald S. Goldstein; Peter Hohenstein; Benjamin Dekel

Identification of tissue‐specific renal stem/progenitor cells with nephrogenic potential is a critical step in developing cell‐based therapies for renal disease. In the human kidney, stem/progenitor cells are induced into the nephrogenic pathway to form nephrons until the 34 week of gestation, and no equivalent cell types can be traced in the adult kidney. Human nephron progenitor cells (hNPCs) have yet to be isolated. Here we show that growth of human foetal kidneys in serum‐free defined conditions and prospective isolation of NCAM1+ cells selects for nephron lineage that includes the SIX2‐positive cap mesenchyme cells identifying a mitotically active population with in vitro clonogenic and stem/progenitor properties. After transplantation in the chick embryo, these cells—but not differentiated counterparts—efficiently formed various nephron tubule types. hNPCs engrafted and integrated in diseased murine kidneys and treatment of renal failure in the 5/6 nephrectomy kidney injury model had beneficial effects on renal function halting disease progression. These findings constitute the first definition of an intrinsic nephron precursor population, with major potential for cell‐based therapeutic strategies and modelling of kidney disease.


Stem Cells | 2010

Concise review: Kidney stem/progenitor cells: Differentiate, sort out, or reprogram?

Oren Pleniceanu; Orit Harari-Steinberg; Benjamin Dekel

End‐stage renal disease (ESRD) is defined as the inability of the kidneys to remove waste products and excess fluid from the blood. ESRD progresses from earlier stages of chronic kidney disease (CKD) and occurs when the glomerular filtration rate (GFR) is below 15 ml/minute/1.73 m2. CKD and ESRD are dramatically rising due to increasing aging population, population demographics, and the growing rate of diabetes and hypertension. Identification of multipotential stem/progenitor populations in mammalian tissues is important for therapeutic applications and for understanding developmental processes and tissue homeostasis. Progenitor populations are ideal targets for gene therapy, cell transplantation, and tissue engineering. The demand for kidney progenitors is increasing due to severe shortage of donor organs. Because dialysis and transplantation are currently the only successful therapies for ESRD, cell therapy offers an alternative approach for kidney diseases. However, this approach may be relevant only in earlier stages of CKD, when kidney function and histology are still preserved, allowing for the integration of cells and/or for their paracrine effects, but not when small and fibrotic end‐stage kidneys develop. Although blood‐ and bone marrow‐derived stem cells hold a therapeutic promise, they are devoid of nephrogenic potential, emphasizing the need to seek kidney stem cells beyond known extrarenal sources. Moreover, controversies regarding the existence of a true adult kidney stem cell highlight the importance of studying cell‐based therapies using pluripotent cells, progenitor cells from fetal kidney, or dedifferentiated/reprogrammed adult kidney cells. STEM CELLS 2010; 28:1649–1660.


Current Protein & Peptide Science | 2004

The COP9 Signalosome: Mediating Between Kinase Signaling and Protein Degradation

Orit Harari-Steinberg; Daniel A. Chamovitz

The COP9 Signalosome (CSN), a highly conserved eight-subunit complex, is found in all higher eukaryotes. It contains eight core subunits, named CSN1-8, in order of decreasing molecular weight. The CSN is structurally similar to the regulatory lid of 26S proteasome and the eukaryotic translation initiation factor eIF3. CSN is also now known to play an essential role in signaling processes controlling many aspects of plant and Drosophila development. Taken together, the various genetic studies demonstrate that the CSN is involved at the nexus between multiple signal inputs and a variety of downstream regulatory cascades controlling specific aspects of cellular differentiation. Research in various organisms has converged onto the notion that CSN is biochemically linked to ubiquitin-dependent protein degradation. Other proposed roles for the CSN include regulating eIF3 and kinase signaling. CSN is itself is both a target for kinase activity and associates with and coordinates activity of kinases. CSN-associated kinases. This kinase activity further regulates the ubiquitin-dependent degradation of various transcription factors. This review concentrates on the proposed activity of the CSN as a regulator of protein phosphorylation.


Oncogene | 2011

Resistance or sensitivity of Wilms’ tumor to anti-FZD7 antibody highlights the Wnt pathway as a possible therapeutic target

N. Pode-Shakked; Orit Harari-Steinberg; Y. Haberman-Ziv; Eithan Rom-Gross; S. Bahar; Dorit Omer; Sally Metsuyanim; Ella Buzhor; Jasmine Jacob-Hirsch; Ronald S. Goldstein; M. Mark-Danieli; Benjamin Dekel

Wilms’ tumor (WT), the most frequent renal solid tumor in children, has been linked to aberrant Wnt signaling. Herein, we demonstrate that different WTs can be grouped according to either sensitivity or resistance to an antibody (Ab) specific to frizzled7 (FZD7), a Wnt receptor. In the FZD7-sensitive WT phenotype, the Ab induced cell death of the FZD7+ fraction, which in turn depleted primary WT cultures of their clonogenic and sphere-forming cells and decreased in vivo proliferation and survival on xenografting to the chick chorio-allantoic-membrane. In contrast, FZD7-resistant WT in which no cell death was induced showed a different intra-cellular route of the Ab-FZD7 complex compared with sensitive tumors and accumulation of β-catenin. This coincided with a low sFRP1 and DKK1 (Wnt inhibitors) expression pattern, restored epigenetically with de-methylating agents, and lack of β-catenin or WTX mutations. The addition of exogenous DKK1 and sFRP1 to the tumor cells enabled the sensitization of FZD7-resistant WT to the FZD7 Ab. Finally, although extremely difficult to achieve because of dynamic cellular localization of FZD7, sorting of FZD7+ cells from resistant WT, showed them to be highly clonogenic/proliferative, overexpressing WT ‘stemness’ genes, emphasizing the importance of targeting this fraction. FZD7 Ab therapy alone or in combination with Wnt pathway antagonists may have a significant role in the treatment of WT via targeting of a tumor progenitor population.


American Journal of Pathology | 2013

Reactivation of NCAM1 Defines a Subpopulation of Human Adult Kidney Epithelial Cells with Clonogenic and Stem/Progenitor Properties

Ella Buzhor; Dorit Omer; Orit Harari-Steinberg; Zohar Dotan; Einav Vax; Sara Pri-Chen; Sally Metsuyanim; Oren Pleniceanu; Ronald S. Goldstein; Benjamin Dekel

The nephron is composed of a monolayer of epithelial cells that make up its various compartments. In development, these cells begin as mesenchyme. NCAM1, abundant in the mesenchyme and early nephron lineage, ceases to express in mature kidney epithelia. We show that, once placed in culture and released from quiescence, adult human kidney epithelial cells (hKEpCs), uniformly positive for CD24/CD133, re-express NCAM1 in a specific cell subset that attains a stem/progenitor state. Immunosorted NCAM1(+) cells overexpressed early nephron progenitor markers (PAX2, SALL1, SIX2, WT1) and acquired a mesenchymal fate, indicated by high vimentim and reduced E-cadherin levels. Gene expression and microarray analysis disclosed both a proximal tubular origin of these cells and molecules regulating epithelial-mesenchymal transition. NCAM1(+) cells generated clonal progeny when cultured in the presence of fetal kidney conditioned medium, differentiated along mesenchymal lineages but retained the unique propensity to generate epithelial kidney spheres and produce epithelial renal tissue on single-cell grafting in chick CAM and mouse. Depletion of NCAM1(+) cells from hKEpCs abrogated stemness traits in vitro. Eliminating these cells during the regenerative response that follows glycerol-induced acute tubular necrosis worsened peak renal injury in vivo. Thus, higher clone-forming and developmental capacities characterize a distinct subset of adult kidney-derived cells. The ability to influence an endogenous regenerative response via NCAM1 targeting may lead to novel therapeutics for renal diseases.


Journal of The American Society of Nephrology | 2013

Renal Hypodysplasia Associates with a Wnt4 Variant that Causes Aberrant Canonical Wnt Signaling

Asaf Vivante; Michal Mark-Danieli; Miriam Davidovits; Orit Harari-Steinberg; Dorit Omer; Yehudit Gnatek; Roxana Cleper; Daniel Landau; Yael Kovalski; Irit Weissman; Israel Eisenstein; Michalle Soudack; Haike Reznik Wolf; Naomi Issler; Danny Lotan; Yair Anikster; Benjamin Dekel

Abnormal differentiation of the renal stem/progenitor pool into kidney tissue can lead to renal hypodysplasia (RHD), but the underlying causes of RHD are not well understood. In this multicenter study, we identified 20 Israeli pedigrees with isolated familial, nonsyndromic RHD and screened for mutations in candidate genes involved in kidney development, including PAX2, HNF1B, EYA1, SIX1, SIX2, SALL1, GDNF, WNT4, and WT1. In addition to previously reported RHD-causing genes, we found that two affected brothers were heterozygous for a missense variant in the WNT4 gene. Functional analysis of this variant revealed both antagonistic and agonistic canonical WNT stimuli, dependent on cell type. In HEK293 cells, WNT4 inhibited WNT3A induced canonical activation, and the WNT4 variant significantly enhanced this inhibition of the canonical WNT pathway. In contrast, in primary cultures of human fetal kidney cells, which maintain WNT activation and more closely represent WNT signaling in renal progenitors during nephrogenesis, this mutation caused significant loss of function, resulting in diminished canonical WNT/β-catenin signaling. In conclusion, heterozygous WNT4 variants are likely to play a causative role in renal hypodysplasia.


Organogenesis | 2011

Selecting the optimal cell for kidney regeneration: fetal, adult or reprogrammed stem cells.

Orit Harari-Steinberg; Oren Pleniceanu; Benjamin Dekel

Chronic kidney disease (CKD) is a progressive loss in renal function over a period of months or years. End-stage renal disease (ESRD) or stage 5 CKD ensues when renal function deteriorates to under 15% of the normal range. ESRD requires either dialysis or, preferentially, a kidney organ allograft, which is severely limited due to organ shortage for transplantation. To combat this situation, one needs to either increase supply of organs or decrease their demand. Two strategies therefore exist: for those that have completely lost their kidney function (ESRD), we will need to supply new kidneys. Taking into account the kidneys’ extremely complex structure, this may prove to be impossible in the near future. In contrast, for those patients that are in the slow progression route from CKD to ESRD but still have functional kidneys, we might be able to halt progression by introducing stem cell therapy to diseased kidneys to rejuvenate or regenerate individual cell types. Multiple cell compartments that fall into three categories are likely to be worthy targets for cell repair: vessels, stroma (interstitium) and nephron epithelia. Different stem/progenitor cells can be linked to regeneration of specific cell types; hematopoietic progenitors and hemangioblastic cell types have specific effects on the vascular niche (vasculogenesis and angiogenesis). Multipotent stromal cells (MSC), whether derived from the bone marrow or isolated from the kidney’s non-tubular compartment, may, in turn, heal nephron epithelia via paracrine mechanisms. Nevertheless, as we now know that all of the above lack nephrogenic potential, we should continue our quest to derive genuine nephron (epithelial) progenitors from differentiated pluripotent stem cells, from fetal and adult kidneys and from directly reprogrammed somatic cells.


Genes to Cells | 2007

COP9 signalosome subunit 5 (CSN5/Jab1) regulates the development of the Drosophila immune system: effects on Cactus, Dorsal and hematopoiesis

Orit Harari-Steinberg; Rafael Cantera; Simona Denti; Elisabetta Bianchi; Efrat Oron; Daniel Segal; Daniel A. Chamovitz

The COP9 signalosome is a multifunctional regulator essential for Drosophila development. A loss‐of‐function mutant in Drosophila COP9 signalosome subunit 5 (CSN5) develops melanotic bodies, a phenotype common to mutants in immune signaling. csn5null larvae accumulated high levels of Cactus that co‐localizes with Dorsal to the nucleus. However, Dorsal‐dependent transcriptional activity remained repressed in the absence of an inducing signal, despite its nuclear localization. Dorsal activity in mutant larvae and NFκB activity in CSN5 down‐regulated mammalian cells can be induced following activation of the Toll/IL‐1 pathway. csn5null larvae contained more hemocytes than wild‐type (wt) larvae. A large portion of these cells have differentiated to lamellocytes (LM), a hemocyte cell type rarely seen in normal larvae. The results presented here indicate that CSN5 is a negative regulator of Dorsal subcellular localization, and of hemocyte proliferation and differentiation. These results further indicate that nuclear localization of Dorsal can be uncoupled from its activation. Surprisingly, CSN5 is not necessary for immune‐induced degradation of Cactus.


Scientific Reports | 2016

Dissecting Stages of Human Kidney Development and Tumorigenesis with Surface Markers Affords Simple Prospective Purification of Nephron Stem Cells

Naomi Pode-Shakked; Oren Pleniceanu; Rotem Gershon; Rachel Shukrun; Itamar Kanter; Efrat Bucris; Ben Pode-Shakked; Gal Tam; Hadar Tam; Revital Caspi; Sara Pri-Chen; Einav Vax; Guy Katz; Dorit Omer; Orit Harari-Steinberg; Tomer Kalisky; Benjamin Dekel

When assembling a nephron during development a multipotent stem cell pool becomes restricted as differentiation ensues. A faulty differentiation arrest in this process leads to transformation and initiation of a Wilms’ tumor. Mapping these transitions with respective surface markers affords accessibility to specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark human renal progenitor populations. Herein, using cell sorting, RNA sequencing, in vitro studies with serum-free media and in vivo xenotransplantation we demonstrate a sequential map that links human kidney development and tumorigenesis; In nephrogenesis, NCAM1+CD133− marks SIX2+ multipotent renal stem cells transiting to NCAM1+CD133+ differentiating segment-specific SIX2− epithelial progenitors and NCAM1−CD133+ differentiated nephron cells. In tumorigenesis, NCAM1+CD133− marks SIX2+ blastema that includes the ALDH1+ WT cancer stem/initiating cells, while NCAM1+CD133+ and NCAM1−CD133+ specifying early and late epithelial differentiation, are severely restricted in tumor initiation capacity and tumor self-renewal. Thus, negative selection for CD133 is required for defining NCAM1+ nephron stem cells in normal and malignant nephrogenesis.

Collaboration


Dive into the Orit Harari-Steinberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge