Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naomi Takenaka is active.

Publication


Featured researches published by Naomi Takenaka.


Genome Biology | 2014

Insulator function and topological domain border strength scale with architectural protein occupancy

Kevin Van Bortle; Michael H. Nichols; Li Li; Chin-Tong Ong; Naomi Takenaka; Zhaohui S. Qin; Victor G. Corces

BackgroundChromosome conformation capture studies suggest that eukaryotic genomes are organized into structures called topologically associating domains. The borders of these domains are highly enriched for architectural proteins with characterized roles in insulator function. However, a majority of architectural protein binding sites localize within topological domains, suggesting sites associated with domain borders represent a functionally different subclass of these regulatory elements. How topologically associating domains are established and what differentiates border-associated from non-border architectural protein binding sites remain unanswered questions.ResultsBy mapping the genome-wide target sites for several Drosophila architectural proteins, including previously uncharacterized profiles for TFIIIC and SMC-containing condensin complexes, we uncover an extensive pattern of colocalization in which architectural proteins establish dense clusters at the borders of topological domains. Reporter-based enhancer-blocking insulator activity as well as endogenous domain border strength scale with the occupancy level of architectural protein binding sites, suggesting co-binding by architectural proteins underlies the functional potential of these loci. Analyses in mouse and human stem cells suggest that clustering of architectural proteins is a general feature of genome organization, and conserved architectural protein binding sites may underlie the tissue-invariant nature of topologically associating domains observed in mammals.ConclusionsWe identify a spectrum of architectural protein occupancy that scales with the topological structure of chromosomes and the regulatory potential of these elements. Whereas high occupancy architectural protein binding sites associate with robust partitioning of topologically associating domains and robust insulator function, low occupancy sites appear reserved for gene-specific regulation within topological domains.


Molecular Cell | 2011

Regulation of Chromatin Organization and Inducible Gene Expression by a Drosophila Insulator

Ashley M. Wood; Kevin Van Bortle; Edward Ramos; Naomi Takenaka; Margaret Rohrbaugh; Brian C. Jones; Keith C. Jones; Victor G. Corces

Insulators are multiprotein-DNA complexes thought to affect gene expression by mediating inter- and intrachromosomal interactions. Drosophila insulators contain specific DNA-binding proteins plus common components, such as CP190, that facilitate these interactions. Here, we examine changes in the distribution of Drosophila insulator proteins during the heat-shock and ecdysone responses. We find that CP190 recruitment to insulator sites is the main regulatable step in controlling insulator function during heat shock. In contrast, both CP190 and DNA-binding protein recruitment are regulated during the ecdysone response. CP190 is necessary to stabilize specific chromatin loops and for proper activation of transcription of genes regulated by this hormone. These findings suggest that cells may regulate recruitment of insulator proteins to DNA to activate insulator activity at specific sites and create distinct patterns of nuclear organization that are necessary to achieve proper gene expression in response to different stimuli.


Genome Research | 2012

Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains

Kevin Van Bortle; Edward Ramos; Naomi Takenaka; Jingping Yang; Jessica Wahi; Victor G. Corces

Several multiprotein DNA complexes capable of insulator activity have been identified in Drosophila melanogaster, yet only CTCF, a highly conserved zinc finger protein, and the transcription factor TFIIIC have been shown to function in mammals. CTCF is involved in diverse nuclear activities, and recent studies suggest that the proteins with which it associates and the DNA sequences that it targets may underlie these various roles. Here we show that the Drosophila homolog of CTCF (dCTCF) aligns in the genome with other Drosophila insulator proteins such as Suppressor of Hairy wing [SU(HW)] and Boundary Element Associated Factor of 32 kDa (BEAF-32) at the borders of H3K27me3 domains, which are also enriched for associated insulator proteins and additional cofactors. RNAi depletion of dCTCF and combinatorial knockdown of gene expression for other Drosophila insulator proteins leads to a reduction in H3K27me3 levels within repressed domains, suggesting that insulators are important for the maintenance of appropriate repressive chromatin structure in Polycomb (Pc) domains. These results shed new insights into the roles of insulators in chromatin domain organization and support recent models suggesting that insulators underlie interactions important for Pc-mediated repression. We reveal an important relationship between dCTCF and other Drosophila insulator proteins and speculate that vertebrate CTCF may also align with other nuclear proteins to accomplish similar functions.


PLOS Genetics | 2010

14-3-3 Mediates Histone Cross-Talk during Transcription Elongation in Drosophila

Caline S. Karam; Wendy A. Kellner; Naomi Takenaka; Alexa W. Clemmons; Victor G. Corces

Post-translational modifications of histone proteins modulate the binding of transcription regulators to chromatin. Studies in Drosophila have shown that the phosphorylation of histone H3 at Ser10 (H3S10ph) by JIL-1 is required specifically during early transcription elongation. 14-3-3 proteins bind H3 only when phosphorylated, providing mechanistic insights into the role of H3S10ph in transcription. Findings presented here show that 14-3-3 functions downstream of H3S10ph during transcription elongation. 14-3-3 proteins localize to active genes in a JIL-1–dependent manner. In the absence of 14-3-3, levels of actively elongating RNA polymerase II are severely diminished. 14-3-3 proteins interact with Elongator protein 3 (Elp3), an acetyltransferase that functions during transcription elongation. JIL-1 and 14-3-3 are required for Elp3 binding to chromatin, and in the absence of either protein, levels of H3K9 acetylation are significantly reduced. These results suggest that 14-3-3 proteins mediate cross-talk between histone phosphorylation and acetylation at a critical step in transcription elongation.


Genome Research | 2012

Genome-wide phosphoacetylation of histone H3 at Drosophila enhancers and promoters

Wendy A. Kellner; Edward Ramos; Kevin Van Bortle; Naomi Takenaka; Victor G. Corces

Transcription regulation is mediated by enhancers that bind sequence-specific transcription factors, which in turn interact with the promoters of the genes they control. Here, we show that the JIL-1 kinase is present at both enhancers and promoters of ecdysone-induced Drosophila genes, where it phosphorylates the Ser10 and Ser28 residues of histone H3. JIL-1 is also required for CREB binding protein (CBP)-mediated acetylation of Lys27, a well-characterized mark of active enhancers. The presence of these proteins at enhancers and promoters of ecdysone-induced genes results in the establishment of the H3K9acS10ph and H3K27acS28ph marks at both regulatory sequences. These modifications are necessary for the recruitment of 14-3-3, a scaffolding protein capable of facilitating interactions between two simultaneously bound proteins. Chromatin conformation capture assays indicate that interaction between the enhancer and the promoter is dependent on the presence of JIL-1, 14-3-3, and CBP. Genome-wide analyses extend these conclusions to most Drosophila genes, showing that the presence of JIL-1, H3K9acS10ph, and H3K27acS28ph is a general feature of enhancers and promoters in this organism.


Nucleic Acids Research | 2013

Distinct isoforms of the Drosophila Brd4 homologue are present at enhancers, promoters and insulator sites

Wendy A. Kellner; Kevin Van Bortle; Li Li; Edward Ramos; Naomi Takenaka; Victor G. Corces

Brd4 is a double bromodomain protein that has been shown to interact with acetylated histones to regulate transcription by recruiting Positive Transcription Elongation Factor b to the promoter region. Brd4 is also involved in gene bookmarking during mitosis and is a therapeutic target for the treatment of acute myeloid leukemia. The Drosophila melanogaster Brd4 homologue is called Fs(1)h and, like its vertebrate counterpart, encodes different isoforms. We have used ChIP-seq to examine the genome-wide distribution of Fs(1)h isoforms. We are able to distinguish the Fs(1)h-L and Fs(1)h-S binding profiles and discriminate between the genomic locations of the two isoforms. Fs(1)h-S is present at enhancers and promoters and its amount parallels transcription levels. Correlations between the distribution of Fs(1)h-S and various forms of acetylated histones H3 and H4 suggest a preference for binding to H3K9acS10ph. Surprisingly, Fs(1)h-L is located at sites in the genome where multiple insulator proteins are also present. The results suggest that Fs(1)h-S may be responsible for the classical role assigned to this protein, whereas Fs(1)h-L may have a new and unexpected role in chromatin architecture by working in conjunction with insulator proteins to mediate intra- or inter-chromosome interactions.


PLOS ONE | 2013

Identification and Characterization of Proteins Involved in Nuclear Organization Using Drosophila GFP Protein Trap Lines

Margaret Rohrbaugh; Alyssia Clore; Julia Davis; Sharonta Johnson; Brian V. Jones; Keith T. Jones; Joanne Kim; Bramwel Kithuka; Krystal Lunsford; Joy Mitchell; Brian Mott; Edward Ramos; Maza R. Tchedou; Gilbert Acosta; Mark Araujo; Stuart Cushing; Gabriel Duffy; Felicia Graves; Kyler Griffin; B.V. Gurudatta; Deaundra Jackson; Denis Jaimes; Kendall Jamison; Khali Jones; Dhaujee Kelley; Marquita Kilgore; Derica Laramore; Thuy Le; Bakhtawar Mazhar; Muhammad M. Mazhar

Background Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern. Methodology/Principal Findings We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31) gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp) is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl), a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology. Conclusions/Significance These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these proteins.


Molecular Cell | 2015

Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing.

Li Li; Xiaowen Lyu; Chunhui Hou; Naomi Takenaka; Huy Q. Nguyen; Chin-Tong Ong; Caelin Cubeñas-Potts; Ming Hu; Elissa P. Lei; Giovanni Bosco; Zhaohui S. Qin; Victor G. Corces


Genetics | 2005

Elephants and Human Color-Blind Deuteranopes Have Identical Sets of Visual Pigments

Shozo Yokoyama; Naomi Takenaka; Dalen W. Agnew; Jeheskel Shoshani


Gene | 2007

A novel spectral tuning in the short wavelength-sensitive (SWS1 and SWS2) pigments of bluefin killifish (Lucania goodei)

Shozo Yokoyama; Naomi Takenaka; Nathan S. Blow

Collaboration


Dive into the Naomi Takenaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge