Kevin Van Bortle
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin Van Bortle.
Genome Biology | 2014
Kevin Van Bortle; Michael H. Nichols; Li Li; Chin-Tong Ong; Naomi Takenaka; Zhaohui S. Qin; Victor G. Corces
BackgroundChromosome conformation capture studies suggest that eukaryotic genomes are organized into structures called topologically associating domains. The borders of these domains are highly enriched for architectural proteins with characterized roles in insulator function. However, a majority of architectural protein binding sites localize within topological domains, suggesting sites associated with domain borders represent a functionally different subclass of these regulatory elements. How topologically associating domains are established and what differentiates border-associated from non-border architectural protein binding sites remain unanswered questions.ResultsBy mapping the genome-wide target sites for several Drosophila architectural proteins, including previously uncharacterized profiles for TFIIIC and SMC-containing condensin complexes, we uncover an extensive pattern of colocalization in which architectural proteins establish dense clusters at the borders of topological domains. Reporter-based enhancer-blocking insulator activity as well as endogenous domain border strength scale with the occupancy level of architectural protein binding sites, suggesting co-binding by architectural proteins underlies the functional potential of these loci. Analyses in mouse and human stem cells suggest that clustering of architectural proteins is a general feature of genome organization, and conserved architectural protein binding sites may underlie the tissue-invariant nature of topologically associating domains observed in mammals.ConclusionsWe identify a spectrum of architectural protein occupancy that scales with the topological structure of chromosomes and the regulatory potential of these elements. Whereas high occupancy architectural protein binding sites associate with robust partitioning of topologically associating domains and robust insulator function, low occupancy sites appear reserved for gene-specific regulation within topological domains.
Molecular Cell | 2011
Ashley M. Wood; Kevin Van Bortle; Edward Ramos; Naomi Takenaka; Margaret Rohrbaugh; Brian C. Jones; Keith C. Jones; Victor G. Corces
Insulators are multiprotein-DNA complexes thought to affect gene expression by mediating inter- and intrachromosomal interactions. Drosophila insulators contain specific DNA-binding proteins plus common components, such as CP190, that facilitate these interactions. Here, we examine changes in the distribution of Drosophila insulator proteins during the heat-shock and ecdysone responses. We find that CP190 recruitment to insulator sites is the main regulatable step in controlling insulator function during heat shock. In contrast, both CP190 and DNA-binding protein recruitment are regulated during the ecdysone response. CP190 is necessary to stabilize specific chromatin loops and for proper activation of transcription of genes regulated by this hormone. These findings suggest that cells may regulate recruitment of insulator proteins to DNA to activate insulator activity at specific sites and create distinct patterns of nuclear organization that are necessary to achieve proper gene expression in response to different stimuli.
Genome Research | 2012
Kevin Van Bortle; Edward Ramos; Naomi Takenaka; Jingping Yang; Jessica Wahi; Victor G. Corces
Several multiprotein DNA complexes capable of insulator activity have been identified in Drosophila melanogaster, yet only CTCF, a highly conserved zinc finger protein, and the transcription factor TFIIIC have been shown to function in mammals. CTCF is involved in diverse nuclear activities, and recent studies suggest that the proteins with which it associates and the DNA sequences that it targets may underlie these various roles. Here we show that the Drosophila homolog of CTCF (dCTCF) aligns in the genome with other Drosophila insulator proteins such as Suppressor of Hairy wing [SU(HW)] and Boundary Element Associated Factor of 32 kDa (BEAF-32) at the borders of H3K27me3 domains, which are also enriched for associated insulator proteins and additional cofactors. RNAi depletion of dCTCF and combinatorial knockdown of gene expression for other Drosophila insulator proteins leads to a reduction in H3K27me3 levels within repressed domains, suggesting that insulators are important for the maintenance of appropriate repressive chromatin structure in Polycomb (Pc) domains. These results shed new insights into the roles of insulators in chromatin domain organization and support recent models suggesting that insulators underlie interactions important for Pc-mediated repression. We reveal an important relationship between dCTCF and other Drosophila insulator proteins and speculate that vertebrate CTCF may also align with other nuclear proteins to accomplish similar functions.
Annual Review of Cell and Developmental Biology | 2012
Kevin Van Bortle; Victor G. Corces
Long-range interactions between transcription regulatory elements play an important role in gene activation, epigenetic silencing, and chromatin organization. Transcriptional activation or repression of developmentally regulated genes is often accomplished through tissue-specific chromatin architecture and dynamic localization between active transcription factories and repressive Polycomb bodies. However, the mechanisms underlying the structural organization of chromatin and the coordination of physical interactions are not fully understood. Insulators and Polycomb group proteins form highly conserved multiprotein complexes that mediate functional long-range interactions and have proposed roles in nuclear organization. In this review, we explore recent findings that have broadened our understanding of the function of these proteins and provide an integrative model for the roles of insulators in nuclear organization.
Current Opinion in Genetics & Development | 2013
Kevin Van Bortle; Victor G. Corces
Eukaryotic genomes are intricately arranged into highly organized yet dynamic structures that underlie patterns of gene expression and cellular identity. The recent adaptation of novel genomic strategies for assaying nuclear architecture has significantly extended and accelerated our ability to query the nature of genome organization and the players involved. In particular, recent explorations of physical arrangements and chromatin landscapes in higher eukaryotes have demonstrated that chromatin insulators, which mediate functional interactions between regulatory elements, appear to play an important role in these processes. Here we reflect on current findings and our rapidly expanding understanding of insulators and their role in nuclear architecture and genome function.
Genome Research | 2012
Wendy A. Kellner; Edward Ramos; Kevin Van Bortle; Naomi Takenaka; Victor G. Corces
Transcription regulation is mediated by enhancers that bind sequence-specific transcription factors, which in turn interact with the promoters of the genes they control. Here, we show that the JIL-1 kinase is present at both enhancers and promoters of ecdysone-induced Drosophila genes, where it phosphorylates the Ser10 and Ser28 residues of histone H3. JIL-1 is also required for CREB binding protein (CBP)-mediated acetylation of Lys27, a well-characterized mark of active enhancers. The presence of these proteins at enhancers and promoters of ecdysone-induced genes results in the establishment of the H3K9acS10ph and H3K27acS28ph marks at both regulatory sequences. These modifications are necessary for the recruitment of 14-3-3, a scaffolding protein capable of facilitating interactions between two simultaneously bound proteins. Chromatin conformation capture assays indicate that interaction between the enhancer and the promoter is dependent on the presence of JIL-1, 14-3-3, and CBP. Genome-wide analyses extend these conclusions to most Drosophila genes, showing that the presence of JIL-1, H3K9acS10ph, and H3K27acS28ph is a general feature of enhancers and promoters in this organism.
Nucleic Acids Research | 2013
Wendy A. Kellner; Kevin Van Bortle; Li Li; Edward Ramos; Naomi Takenaka; Victor G. Corces
Brd4 is a double bromodomain protein that has been shown to interact with acetylated histones to regulate transcription by recruiting Positive Transcription Elongation Factor b to the promoter region. Brd4 is also involved in gene bookmarking during mitosis and is a therapeutic target for the treatment of acute myeloid leukemia. The Drosophila melanogaster Brd4 homologue is called Fs(1)h and, like its vertebrate counterpart, encodes different isoforms. We have used ChIP-seq to examine the genome-wide distribution of Fs(1)h isoforms. We are able to distinguish the Fs(1)h-L and Fs(1)h-S binding profiles and discriminate between the genomic locations of the two isoforms. Fs(1)h-S is present at enhancers and promoters and its amount parallels transcription levels. Correlations between the distribution of Fs(1)h-S and various forms of acetylated histones H3 and H4 suggest a preference for binding to H3K9acS10ph. Surprisingly, Fs(1)h-L is located at sites in the genome where multiple insulator proteins are also present. The results suggest that Fs(1)h-S may be responsible for the classical role assigned to this protein, whereas Fs(1)h-L may have a new and unexpected role in chromatin architecture by working in conjunction with insulator proteins to mediate intra- or inter-chromosome interactions.
Transcription | 2012
Kevin Van Bortle; Victor G. Corces
Recent findings provide evidence that tDNAs function as chromatin insulators from yeast to humans. TFIIIC, a transcription factor that interacts with the B-box in tDNAs as well as thousands of ETC sites in the genome, is responsible for insulator function. Though tDNAs are capable of enhancer-blocking and barrier activities for which insulators are defined, new insights into the relationship between insulators and chromatin structure suggest that TFIIIC serves a complex role in genome organization. We review the role of tRNA genes and TFIIIC as chromatin insulators, and highlight recent findings that have broadened our understanding of insulators in genome biology.
Cell Cycle | 2013
B.V. Gurudatta; Jingping Yang; Kevin Van Bortle; Paul G. Donlin-Asp; Victor G. Corces
DREF was first characterized for its role in the regulation of transcription of genes encoding proteins involved in DNA replication and found to interact with sequences similar to the DNA recognition motif of the BEAF-32 insulator protein. Insulators are DNA-protein complexes that mediate intra- and inter-chromosome interactions. Several DNA-binding insulator proteins have been described in Drosophila, including BEAF-32, dCTCF and Su(Hw). Here we find that DREF and BEAF-32 co-localize at the same genomic sites, but their enrichment shows an inverse correlation. Furthermore, DREF co-localizes in the genome with other insulator proteins, suggesting that the function of this protein may require components of Drosophila insulators. This is supported by the finding that mutations in insulator proteins modulate DREF-induced cell proliferation. DREF persists bound to chromatin during mitosis at a subset of sites where it also co-localizes with dCTCF, BEAF-32 and CP190. These sites are highly enriched for sites where Orc2 and Mcm2 are present during interphase and at the borders of topological domains of chromosomes defined by Hi-C. The results suggest that DREF and insulator proteins may help maintain chromosome organization during the cell cycle and mark a subset of genomic sites for the assembly of pre-replication complexes and gene bookmarking during the M/G1 transition.
Molecular Biology of the Cell | 2015
Stéphanie Morchoisne-Bolhy; Marie-Claude Geoffroy; Imène B. Bouhlel; Annabelle Alves; Nicolas Audugé; Xavier Baudin; Kevin Van Bortle; Maureen A. Powers; Valérie Doye
The Nup107-160 nuclear pore subcomplex (Y-complex) and the chromatin-binding nucleoporin Elys dynamically colocalize with Nup98 and the export factor CRM1 in nuclear GLFG bodies present in HeLa sublines. Thus, in addition to its structural role at the NPC and its mitotic functions, the Y-complex may also act inside the nucleus during interphase.