Naoufal Zamzami
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Naoufal Zamzami.
Nature | 1999
Santos A. Susin; Hans K. Lorenzo; Naoufal Zamzami; Isabel Marzo; Bryan E. Snow; Joan Mangion; Etienne Jacotot; Paola Costantini; Markus Loeffler; Nathanael Larochette; David R. Goodlett; Ruedi Aebersold; David P. Siderovski; Josef M. Penninger; Guido Kroemer
Mitochondria play a key part in the regulation of apoptosis (cell death). Their intermembrane space contains several proteins that are liberated through the outer membrane in order to participate in the degradation phase of apoptosis. Here we report the identification and cloning of an apoptosis-inducing factor, AIF, which is sufficient to induce apoptosis of isolated nuclei. AIF is a flavoprotein of relative molecular mass 57,000 which shares homology with the bacterial oxidoreductases; it is normally confined to mitochondria but translocates to the nucleus when apoptosis is induced. Recombinant AIF causes chromatin condensation in isolated nuclei and large-scale fragmentation of DNA. It induces purified mitochondria to release the apoptogenic proteins cytochrome c and caspase-9. Microinjection of AIF into the cytoplasm of intact cells induces condensation of chromatin, dissipation of the mitochondrial transmembrane potential, and exposure of phosphatidylserine in the plasma membrane. None of these effects is prevented by the wide-ranging caspase inhibitor known as Z-VAD.fmk. Overexpression of Bcl-2, which controls the opening of mitochondrial permeability transition pores, prevents the release of AIF from the mitochondrion but does not affect its apoptogenic activity. These results indicate that AIF is a mitochondrial effector of apoptotic cell death.
Immunology Today | 1997
Guido Kroemer; Naoufal Zamzami; Santos A. Susin
The dysregulation of programmed cell death (apoptosis) is involved in different pathologies including cancer, which is frequently associated with an increase resistance to apoptosis induction. We discovered in 1994 the implication of a specific organelle, the mitochondrion, in apoptosis. Our result have demonstrated that mitochondrial membrane permeabilization (MMP) constitutes a decisive step of the apoptotic process. MMP is regulated by numerous effectors, including the proteins from the Bcl-2/Bax family (oncogenes or tumor suppressor genes which modulate apoptosis), which interact with sessile proteins of mitochondria. MMP can be induced by a large number of pro-apoptotic second messengers, as well as by some experimental anti-cancer agents, suggesting that MMP constitutes a point of integration of the apoptotic response. As a result of MMP, several apoptogenic proteins normally confined to mitochondria are released in the extra-mitochondrial space and participate in the suicidal dismantling of the cell. We have identified several mitochondrial apoptogenic proteins, one of which, the apoptosis inducing factor (AIF) has been cloned. AIF appears to be one of the principal effectors of the apoptotic machinery. Genetic inactivation of AIF abolishes the first wave of apoptosis indispensable for early embryonic morphogenesis. In contrast, its presence in the extra-mitochondrial compartment suffices to kill cells. Altogether, these results allow for the development of new strategies aiming at inducing apoptosis in cancer cells.
Nature | 2001
Nicholas Joza; Santos A. Susin; Eric Daugas; William L. Stanford; Sarah K. Cho; Carol Y. J. Li; Takehiko Sasaki; Andrew J. Elia; H.-Y. Mary Cheng; Luigi Ravagnan; Karine F. Ferri; Naoufal Zamzami; Andrew Wakeham; Razqallah Hakem; Hiroki Yoshida; Young-Yun Kong; Tak W. Mak; Juan Carlos Zúñiga-Pflücker; Guido Kroemer; Josef M. Penninger
Programmed cell death is a fundamental requirement for embryogenesis, organ metamorphosis and tissue homeostasis. In mammals, release of mitochondrial cytochrome c leads to the cytosolic assembly of the apoptosome—a caspase activation complex involving Apaf1 and caspase-9 that induces hallmarks of apoptosis. There are, however, mitochondrially regulated cell death pathways that are independent of Apaf1/caspase-9. We have previously cloned a molecule associated with programmed cell death called apoptosis-inducing factor (AIF). Like cytochrome c, AIF is localized to mitochondria and released in response to death stimuli. Here we show that genetic inactivation of AIF renders embryonic stem cells resistant to cell death after serum deprivation. Moreover, AIF is essential for programmed cell death during cavitation of embryoid bodies—the very first wave of cell death indispensable for mouse morphogenesis. AIF-dependent cell death displays structural features of apoptosis, and can be genetically uncoupled from Apaf1 and caspase-9 expression. Our data provide genetic evidence for a caspase-independent pathway of programmed cell death that controls early morphogenesis.
The FASEB Journal | 1995
Guido Kroemer; Patrice X. Petit; Naoufal Zamzami; Jean-Luc Vayssière; Bernard Mignotte
Programmed cell death (PCD) is involved in the removal of superfluous and damaged cells in most organ systems. The induction phase of PCD or apoptosis is characterized by an extreme heterogeneity of potential PCD‐triggering signal transduction pathways. During the subsequent effector phase, the numerous PCD‐indueing stimuli converge into a few stereotypical pathways and cells pass a point of no return, thus becoming irreversibly committed to death. It is only during the successive degradation phase that vital structures and functions are destroyed, giving rise to the full‐blown phenotype of PCD. Evidence is accumulating that cytoplasmic structures, including mitochondria, participate in the critical effector stage and that alterations commonly considered to define PCD (apoptotic morphology of the nucleus and regular, oligonucleosomal chromatin fragmentation) have to be ascribed to the late degradation phase. The decision as to whether a cell will undergo PCD or not may be expected to be regulated by “switches” that, once activated, trigger self‐am‐ plificatory metabolic pathways. One of these switches may reside in a perturbation of mitochondrial function. Thus, a decrease in mitochondrial transmem‐ brane potential, followed by mitochondrial uncoupling and generation of reactive oxygen species, precedes nuclear alterations. It appears that molecules that participate in apoptotic decisionmaking also exert functions that are vital for normal cell proliferation and intermediate metabolism.—Kroemer, G., Petit, P., Zamzami, N., Vayssière, J.‐L., Mignotte, B. The biochemistry of programmed cell death. FASEB J. 9, 1277‐1287 (1995)
Nature Reviews Molecular Cell Biology | 2001
Naoufal Zamzami; Guido Kroemer
There is widespread agreement that mitochondria have a function in apoptosis, but the mechanisms behind their involvement remain controversial. Here we suggest that opening of a multiprotein complex called the mitochondrial permeability transition pore complex is sufficient (and, usually, necessary) for triggering apoptosis.
Biochimica et Biophysica Acta | 1998
Santos A. Susin; Naoufal Zamzami; Guido Kroemer
Scientific revolution [1] implies a transformation of the world view in which a dominant paradigm is substituted by a new one, one which furnishes an ameliorated comprehension of facts, as well as an advantage for the design of informative experiments. Apoptosis research has recently experienced a change from a paradigm in which the nucleus determined the apoptotic process to a paradigm in which mitochondria constitute the center of death control. Several pieces of evidence imply mitochondria in the process of apoptosis. Kinetic data indicate that mitochondria undergo major changes in membrane integrity before classical signs of apoptosis become manifest. These changes concern both the inner and the outer mitochondrial membranes, leading to a disruption of the inner transmembrane potential (DeltaPsim) and the release of intermembrane proteins through the outer membrane. Cell-free systems of apoptosis demonstrate that mitochondrial products are rate limiting for the activation of caspases and endonucleases in cell extracts. Functional studies indicate that drug-enforced opening or closing of the mitochondrial megachannel (also called permeability transition pore) can induce or prevent apoptosis. The anti-apoptotic oncoprotein Bcl-2 acts on mitochondria to stabilize membrane integrity and to prevent opening of the megachannel. These observations are compatible with a three-step model of apoptosis: a premitochondrial phase during which signal transduction cascades or damage pathways are activated; a mitochondrial phase, during which mitochondrial membrane function is lost; and a post-mitochondrial phase, during which proteins released from mitochondria cause the activation of catabolic proteases and nucleases. The implication of mitochondria in apoptosis has important consequences for the understanding of the normal physiology of apoptosis, its deregulation in cancer and degenerative diseases, and the development of novel cytotoxic and cytoprotective drugs.
Nature Cell Biology | 2001
Luigi Ravagnan; Sandeep Gurbuxani; Santos A. Susin; Carine Maisse; Eric Daugas; Naoufal Zamzami; Tak W. Mak; Marja Jäättelä; Josef M. Penninger; Carmen Garrido; Guido Kroemer
Heat-shock protein 70 (Hsp70) has been reported to block apoptosis by binding apoptosis protease activating factor-1 (Apaf-1), thereby preventing constitution of the apoptosome, the Apaf-1/cytochrome c/caspase-9 activation complex. Here we show that overexpression of Hsp70 protects Apaf-1−/− cells against death induced by serum withdrawal, indicating that Apaf-1 is not the only target of the anti-apoptotic action of Hsp70. We investigated the effect of Hsp70 on apoptosis mediated by the caspase-independent death effector apoptosis inducing factor (AIF), which is a mitochondrial intermembrane flavoprotein. In a cell-free system, Hsp70 prevented the AIF-induced chromatin condensation of purified nuclei. Hsp70 specifically interacted with AIF, as shown by ligand blots and co-immunoprecipitation. Cells overexpressing Hsp70 were protected against the apoptogenic effects of AIF targeted to the extramitochondrial compartment. In contrast, an anti-sense Hsp70 complementary DNA, which reduced the expression of endogenous Hsp70, increased sensitivity to the lethal effect of AIF. The ATP-binding domain of Hsp70 seemed to be dispensable for inhibiting cell death induced by serum withdrawal, AIF binding and AIF inhibition, although it was required for Apaf-1 binding. Together, our data indicate that Hsp70 can inhibit apoptosis by interfering with target proteins other than Apaf-1, one of which is AIF.
The FASEB Journal | 2000
Eric Daugas; Santos A. Susin; Naoufal Zamzami; Karine F. Ferri; Theano Irinopoulou; Nathanael Larochette; Marie-Christine Prévost; Brian Leber; David W. Andrews; Josef M. Penninger; Guido Kroemer
Apoptosis inducing factor (AIF) is a novel apoptotic effector protein that induces chro‐matin condensation and large‐scale (—50 kbp) DNA fragmentation when added to purified nuclei in vitro. Confocal and electron microscopy reveal that, in normal cells, AIF is strictly confined to mitochondria and thus colocalizes with heat shock protein 60 (hsp60). On induction of apoptosis by staurosporin, c‐Myc, etoposide, or ceramide, AIF (but not hsp60) translocates to the nucleus. This suggests that only the outer mitochondrial membrane (which retains AIF in the intermembrane space) but not the inner membrane (which retains hsp60 in the matrix) becomes protein permeable. The mitochondrio‐nuclear redistribution of AIF is prevented by a Bcl‐2 protein specifically targeted to mitochondrial membranes. The pan‐caspase inhibitor Z‐VAD.fmk does not prevent the staurosporin‐induced translocation of AIF, although it does inhibit oligonucleosomal DNA fragmentation and arrests chromatin condensation at an early stage. ATP depletion is sufficient to cause AIF translocation to the nucleus, and this phenomenon is accelerated by the apoptosis inducer staurosporin. However, in conditions in which both glycolytic and respiratory ATP generation is inhibited, cells fail to manifest any sign of chromatin condensation and advanced DNA fragmentation, thus manifesting a ‘necrotic’ phenotype. Both in the presence of Z‐VAD.fmk and in conditions of ATP depletion, AIF translocation correlates with the appearance of large‐scale DNA fragmentation. Altogether, these data are compatible with the hypothesis that AIF is a caspase‐independent mitochondrial death effector responsible for partial chromatinolysis.—Daugas, E., Susin, S. A., Zamzami, N., Ferri, K., Irinopoulou, T., Larochette, N., Prévost, M.‐C, Leber, B., Andrews, D., Penninger, J., Kroemer, G. Mitochondrio‐nuclear translocation of AIF in apoptosis and necrosis. FASEB J. 14, 729–739 (2000)
FEBS Letters | 1996
Patrice X. Petit; Santos-Antonio Susin; Naoufal Zamzami; Bernard Mignotte; Guido Kroemer
Programmed cell death, or apoptosis, has in the past few years undoubtedly become one of the most intensively investigated biological processes. However, fundamental questions concerning the molecular and biochemical mechanisms remain to be elucidated. The central question concerns the biochemical steps shared by the numerous death induction pathways elicited by different stimuli. Heterogeneous death signals precede a common effector phase during which cells pass a threshold of ‘no return’ and are engaged in a degradation phase where they acquire the typical onset of late apoptosis. Alterations in mitochondrial permeability transition linked to membrane potential disruption precede nuclear and plasma membrane changes. In vitro induction of permeability transition in isolated mitochondria provokes the release of a protein factor capable of inducing nuclear chromatin condensation and fragmentation. This permeability transition is regulated by multiple endogenous effectors, including members of the bcl‐2 gene family. Inhibition of these effects prevents apoptosis.
Oncogene | 1997
Tamara Hirsch; Piero Marchetti; Santos S. Susin; Bruno Dallaporta; Naoufal Zamzami; Isabel Marzo; Maurice Geuskens; Guido Kroemer
Mitochondrial alterations including permeability transition (PT) constitute critical events of the apoptotic cascade and are under the control of Bcl-2 related gene products. Here we show that induction of PT is sufficient to activate CPP32-like proteases with DEVDase activity and the associated cleavage of the nuclear DEVDase substrate poly(ADP-ribose) polymerase (PARP). Thus, direct intervention on mitochondria using a ligand of the mitochondrial benzodiazepin receptor or a protonophore causes DEVDase activation. In addition, the DEVDase activation triggered by conventional apoptosis inducers (glucocorticoids or topoisomerase inhibitors) is prevented by inhibitors of PT. The protease inhibitor N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD.fmk) completely prevents the activation of DEVDase and PARP cleavage, as well as the manifestation of nuclear apoptosis (chromatin condensation, DNA fragmentation, hypoploidy). In addition, Z-VAD.fmk delays the manifestation of apoptosis-associated changes in cellular redox potentials (hypergeneration of superoxide anion, oxidation of compounds of the inner mitochondrial membrane, depletion of non-oxidized glutathione), as well as the exposure of phosphatidylserine residues in the outer plasma membrane leaflet. Although Z-VAD.fmk retards cytolysis, it is incapable of preventing disruption of the plasma membrane during protracted cell culture (12 – 24 h), even in conditions in which it completely blocks nuclear apoptosis (chromatin condensation and DNA fragmentation). Electron microscopic analysis confirms that cells treated with PT inducers alone undergo apoptosis, whereas cells kept in identical conditions in the presence of Z-VAD.fmk die from necrosis. These observations are compatible with the hypothesis that PT would be a rate limiting step in both the apoptotic and the necrotic modes of cell death. In contrast, it would be the availability of apoptogenic proteases that would determine the choice between the two death modalities.