Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naoya Kenmochi is active.

Publication


Featured researches published by Naoya Kenmochi.


Nucleic Acids Research | 2004

RPG: the Ribosomal Protein Gene database

Akihiro Nakao; Maki Yoshihama; Naoya Kenmochi

RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes.


PLOS ONE | 2009

Loss of Ribosomal Protein L11 Affects Zebrafish Embryonic Development through a p53-Dependent Apoptotic Response

Anirban Chakraborty; Tamayo Uechi; Sayomi Higa; Hidetsugu Torihara; Naoya Kenmochi

Ribosome is responsible for protein synthesis in all organisms and ribosomal proteins (RPs) play important roles in the formation of a functional ribosome. L11 was recently shown to regulate p53 activity through a direct binding with MDM2 and abrogating the MDM2-induced p53 degradation in response to ribosomal stress. However, the studies were performed in cell lines and the significance of this tumor suppressor function of L11 has yet to be explored in animal models. To investigate the effects of the deletion of L11 and its physiological relevance to p53 activity, we knocked down the rpl11 gene in zebrafish and analyzed the p53 response. Contrary to the cell line-based results, our data indicate that an L11 deficiency in a model organism activates the p53 pathway. The L11-deficient embryos (morphants) displayed developmental abnormalities primarily in the brain, leading to embryonic lethality within 6–7 days post fertilization. Extensive apoptosis was observed in the head region of the morphants, thus correlating the morphological defects with apparent cell death. A decrease in total abundance of genes involved in neural patterning of the brain was observed in the morphants, suggesting a reduction in neural progenitor cells. Upregulation of the genes involved in the p53 pathway were observed in the morphants. Simultaneous knockdown of the p53 gene rescued the developmental defects and apoptosis in the morphants. These results suggest that ribosomal dysfunction due to the loss of L11 activates a p53-dependent checkpoint response to prevent improper embryonic development.


Human Molecular Genetics | 2008

Deficiency of ribosomal protein S19 during early embryogenesis leads to reduction of erythrocytes in a zebrafish model of Diamond-Blackfan anemia

Tamayo Uechi; Yukari Nakajima; Anirban Chakraborty; Hidetsugu Torihara; Sayomi Higa; Naoya Kenmochi

Ribosomes are responsible for protein synthesis in all cells. Ribosomal protein S19 (RPS19) is one of the 79 ribosomal proteins (RPs) in vertebrates. Heterozygous mutations in RPS19 have been identified in 25% of patients with Diamond-Blackfan anemia (DBA), but the relationship between RPS19 mutations and the pure red-cell aplasia of DBA is unclear. In this study, we developed an RPS19-deficient zebrafish by knocking down rps19 using a Morpholino antisense oligo. The RPS19-deficient animals showed a dramatic decrease in blood cells as well as deformities in the head and tail regions at early developmental stages. These phenotypes were rescued by injection of zebrafish rps19 mRNA, but not by injection of rps19 mRNAs with mutations that have been identified in DBA patients. Our results indicate that rps19 is essential for hematopoietic differentiation during early embryogenesis. The effects were specific to rps19, but knocking down the genes for three other RPs, rpl35, rpl35a and rplp2, produced similar phenotypes, suggesting that these genes might have a common function in zebrafish erythropoiesis. The RPS19-deficient zebrafish will provide a valuable tool for investigating the molecular mechanisms of DBA development in humans.


Wiley Interdisciplinary Reviews - Rna | 2011

Guarding the ‘translation apparatus’: defective ribosome biogenesis and the p53 signaling pathway

Anirban Chakraborty; Tamayo Uechi; Naoya Kenmochi

Ribosomes, the molecular factories that carry out protein synthesis, are essential for every living cell. Ribosome biogenesis, the process of ribosome synthesis, is highly complex and energy consuming. Over the last decade, many exciting and novel findings have linked various aspects of ribosome biogenesis to cell growth and cell cycle control. Defects in ribosome biogenesis have also been linked to human diseases. It is now clear that disruption of ribosome biogenesis causes nucleolar stress that triggers a p53 signaling pathway, thus providing cells with a surveillance mechanism for monitoring ribosomal integrity. Although the exact mechanisms of p53 induction in response to nucleolar stress are still unknown, several ribosomal proteins have been identified as key players in this ribosome–p53 signaling pathway. Recent studies of human ribosomal pathologies in a variety of animal models have also highlighted the role of this pathway in the pathophysiology of these diseases. However, it remains to be understood why the effect of ribosomal malfunction is not a universal response in all cell types but is restricted to particular tissues, causing the specific phenotypes seen in ribosomal diseases. A challenge for future studies will be to identify additional players in this signaling pathway and to elucidate the underlying molecular mechanisms that link defective ribosome synthesis to p53. WIREs RNA 2011 2 507–522 DOI: 10.1002/wrna.73


Nucleic Acids Research | 2012

Loss of ribosomal RNA modification causes developmental defects in zebrafish

Sayomi Higa-Nakamine; Takeo Suzuki; Tamayo Uechi; Anirban Chakraborty; Yukari Nakajima; Mikako Nakamura; Naoko Hirano; Tsutomu Suzuki; Naoya Kenmochi

Non-coding RNAs (ncRNAs) play key roles in diverse cellular activities, and efficient ncRNA function requires extensive posttranscriptional nucleotide modifications. Small nucleolar RNAs (snoRNAs) are a group of ncRNAs that guide the modification of specific nucleotides in ribosomal RNAs (rRNAs) and small nuclear RNAs. To investigate the physiological relevance of rRNA modification in vertebrates, we suppressed the expression of three snoRNAs (U26, U44 and U78), either by disrupting the host gene splicing or by inhibiting the snoRNA precursor processing, and analyzed the consequences of snoRNA loss-of-function in zebrafish. Using a highly sensitive mass spectrometric analysis, we found that decreased snoRNA expression reduces the snoRNA-guided methylation of the target nucleotides. Impaired rRNA modification, even at a single site, led to severe morphological defects and embryonic lethality in zebrafish, which suggests that rRNA modifications play an essential role in vertebrate development. This study highlights the importance of posttranscriptional modifications and their role in ncRNA function in higher eukaryotes.


Journal of Biological Chemistry | 2011

The NPC Motif of Aquaporin-11, Unlike the NPA Motif of Known Aquaporins, Is Essential for Full Expression of Molecular Function

Masahiro Ikeda; Ayaka Andoo; Mariko Shimono; Natsuko Takamatsu; Asaka Taki; Kanako Muta; Wataru Matsushita; Tamayo Uechi; Toshiyuki Matsuzaki; Naoya Kenmochi; Kuniaki Takata; Sei Sasaki; Katsuaki Ito; Kenichi Ishibashi

The recently identified molecule aquaporin-11 (AQP11) has a unique amino acid sequence pattern that includes an Asn-Pro-Cys (NPC) motif, corresponding to the N-terminal Asn-Pro-Ala (NPA) signature motif of conventional AQPs. In this study, we examined the effect of the mutation of the NPC motif on the subcellular localization, oligomerization, and water permeability of AQP11 in transfected mammalian cells. Furthermore, the effect was also assessed using zebrafish. Site-directed mutation at the NPC motif did not affect the subcellular localization of AQP11 but reduced its oligomerization. A cell swelling assay revealed that cells expressing AQP11 with a mutated NPC motif had significantly lower osmotic water permeability than cells expressing wild-type AQP11. Zebrafish deficient in endogenous AQP11 showed a deformity in the tail region at an early stage of development. This phenotype was dramatically rescued by injection of human wild-type AQP11 mRNA, whereas the effect of mRNA for AQP11 with a mutated NPC motif was less marked. Although the NPA motif is known to be important for formation of water-permeable pores by conventional AQPs, our observations suggest that the corresponding NPC motif of AQP11 is essential for full expression of molecular function.


British Journal of Haematology | 2011

Erythropoiesis failure due to RPS19 deficiency is independent of an activated Tp53 response in a zebrafish model of Diamond-Blackfan anaemia.

Hidetsugu Torihara; Tamayo Uechi; Anirban Chakraborty; Minori Shinya; Noriyoshi Sakai; Naoya Kenmochi

Diamond–Blackfan anaemia (DBA) is a cancer‐prone genetic disorder characterized by pure red‐cell aplasia and associated physical deformities. The ribosomal protein S19 gene (RPS19) is the most frequently mutated gene in DBA (∼ 25%). TP53‐mediated cell cycle arrest and/or apoptosis in erythroid cells have been suggested to be major factors for DBA development, but it is not clear why mutations in the ubiquitously expressed RPS19 gene specifically affect erythropoiesis. Previously, we showed that RPS19 deficiency in zebrafish recapitulates the erythropoietic and developmental phenotypes of DBA, including defective erythropoiesis with severe anaemia. In this study, we analysed the simultaneous loss‐of‐function of RPS19 and Tp53 in zebrafish to investigate the role of Tp53 in the erythroid and morphological defects associated with RPS19 deficiency. Co‐inhibition of Tp53 activity rescued the morphological abnormalities, but did not alleviate erythroid aplasia in RPS19‐deficient zebrafish. In addition, knockdown of two other RP genes, rps3a and rpl36a, which result in severe morphological abnormalities but only mild erythroid defects, also elicited an activated Tp53 response. These results suggest that a Tp53‐independent but RPS19‐dependent pathway could be responsible for defective erythropoiesis in RPS19‐deficient zebrafish.


BMC Genomics | 2006

Characteristics and clustering of human ribosomal protein genes

Kyota Ishii; Takanori Washio; Tamayo Uechi; Maki Yoshihama; Naoya Kenmochi; Masaru Tomita

BackgroundThe ribosome is a central player in the translation system, which in mammals consists of four RNA species and 79 ribosomal proteins (RPs). The control mechanisms of gene expression and the functions of RPs are believed to be identical. Most RP genes have common promoters and were therefore assumed to have a unified gene expression control mechanism.ResultsWe systematically analyzed the homogeneity and heterogeneity of RP genes on the basis of their expression profiles, promoter structures, encoded amino acid compositions, and codon compositions. The results revealed that (1) most RP genes are coordinately expressed at the mRNA level, with higher signals in the spleen, lymph node dissection (LND), and fetal brain. However, 17 genes, including the P protein genes (RPLP0, RPLP1, RPLP2), are expressed in a tissue-specific manner. (2) Most promoters have GC boxes and possible binding sites for nuclear respiratory factor 2, Yin and Yang 1, and/or activator protein 1. However, they do not have canonical TATA boxes. (3) Analysis of the amino acid composition of the encoded proteins indicated a high lysine and arginine content. (4) The major RP genes exhibit a characteristic synonymous codon composition with high rates of G or C in the third-codon position and a high content of AAG, CAG, ATC, GAG, CAC, and CTG.ConclusionEleven of the RP genes are still identified as being unique and did not exhibit at least some of the above characteristics, indicating that they may have unknown functions not present in other RP genes. Furthermore, we found sequences conserved between human and mouse genes around the transcription start sites and in the intronic regions. This study suggests certain overall trends and characteristic features of human RP genes.


British Journal of Haematology | 2015

Loss of function mutations in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia

RuNan Wang; Kenichi Yoshida; Tsutomu Toki; Takafumi Sawada; Tamayo Uechi; Yusuke Okuno; Aiko Sato-Otsubo; Kazuko Kudo; Isamu Kamimaki; Rika Kanezaki; Yuichi Shiraishi; Kenichi Chiba; Hiroko Tanaka; Kiminori Terui; Tomohiko Sato; Yuji Iribe; Shouichi Ohga; Madoka Kuramitsu; Isao Hamaguchi; Akira Ohara; Junichi Hara; Kumiko Goi; Kousaku Matsubara; Kenichi Koike; Akira Ishiguro; Yasuhiro Okamoto; Ken-ichiro Watanabe; Hitoshi Kanno; Seiji Kojima; Satoru Miyano

Diamond‐Blackfan anaemia is a congenital bone marrow failure syndrome that is characterized by red blood cell aplasia. The disease has been associated with mutations or large deletions in 11 ribosomal protein genes including RPS7, RPS10, RPS17, RPS19, RPS24, RPS26, RPS29, RPL5, RPL11, RPL26 and RPL35A as well as GATA1 in more than 50% of patients. However, the molecular aetiology of many Diamond‐Blackfan anaemia cases remains to be uncovered. To identify new mutations responsible for Diamond‐Blackfan anaemia, we performed whole‐exome sequencing analysis of 48 patients with no documented mutations/deletions involving known Diamond‐Blackfan anaemia genes except for RPS7, RPL26, RPS29 and GATA1. Here, we identified a de novo splicing error mutation in RPL27 and frameshift deletion in RPS27 in sporadic patients with Diamond‐Blackfan anaemia. In vitro knockdown of gene expression disturbed pre‐ribosomal RNA processing. Zebrafish models of rpl27 and rps27 mutations showed impairments of erythrocyte production and tail and/or brain development. Additional novel mutations were found in eight patients, including RPL3L, RPL6, RPL7L1T, RPL8, RPL13, RPL14, RPL18A and RPL31. In conclusion, we identified novel germline mutations of two ribosomal protein genes responsible for Diamond‐Blackfan anaemia, further confirming the concept that mutations in ribosomal protein genes lead to Diamond‐Blackfan anaemia.


Nucleic Acids Research | 2012

Dissecting the protein–RNA interface: the role of protein surface shapes and RNA secondary structures in protein–RNA recognition

Junichi Iwakiri; Hiroki Tateishi; Anirban Chakraborty; Prakash Patil; Naoya Kenmochi

Protein–RNA interactions are essential for many biological processes. However, the structural mechanisms underlying these interactions are not fully understood. Here, we analyzed the protein surface shape (dented, intermediate or protruded) and the RNA base pairing properties (paired or unpaired nucleotides) at the interfaces of 91 protein–RNA complexes derived from the Protein Data Bank. Dented protein surfaces prefer unpaired nucleotides to paired ones at the interface, and hydrogen bonds frequently occur between the protein backbone and RNA bases. In contrast, protruded protein surfaces do not show such a preference, rather, electrostatic interactions initiate the formation of hydrogen bonds between positively charged amino acids and RNA phosphate groups. Interestingly, in many protein–RNA complexes that interact via an RNA loop, an aspartic acid is favored at the interface. Moreover, in most of these complexes, nucleotide bases in the RNA loop are flipped out and form hydrogen bonds with the protein, which suggests that aspartic acid is important for RNA loop recognition through a base-flipping process. This study provides fundamental insights into the role of the shape of the protein surface and RNA secondary structures in mediating protein–RNA interactions.

Collaboration


Dive into the Naoya Kenmochi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatsuo Tanaka

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sayomi Higa

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar

Noriko Maeda

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge