Nareg Karaoghlanian
American University of Beirut
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nareg Karaoghlanian.
Tobacco Control | 2016
Carolina Ramôa; Marzena M. Hiler; Tory Spindle; Alexa A. Lopez; Nareg Karaoghlanian; Thokozeni Lipato; Alison B. Breland; Alan Shihadeh; Thomas Eissenberg
Introduction Electronic cigarettes (ECIGs) aerosolise a liquid that usually contains propylene glycol and/or vegetable glycerine, flavourants and the dependence-producing drug, nicotine, in various concentrations. This laboratory study examined the relationship between liquid nicotine concentration and plasma nicotine concentration and puffing behaviour in experienced ECIG users. Methods Sixteen ECIG-experienced participants used a 3.3-Volt ECIG battery attached to a 1.5-Ohm dual-coil ‘cartomiser’ loaded with 1 mL of a flavoured propylene glycol/vegetable glycerine liquid to complete four sessions, at least 2 days apart, that differed by nicotine concentration (0, 8, 18 or 36 mg/mL). In each session, participants completed two 10-puff ECIG-use bouts (30 s puff interval) separated by 60 min. Venous blood was sampled to determine plasma nicotine concentration. Puff duration, volume and average flow rate were measured. Results Immediately after bout 1, mean plasma nicotine concentration was 5.5 ng/mL (SD=7.7) for 0 mg/mL liquid, with significantly (p<0.05) higher mean concentrations observed for the 8 (mean=17.8 ng/mL, SD=14.6), 18 (mean=25.9 ng/mL, SD=17.5) and 36 mg/mL (mean=30.2 ng/mL; SD=20.0) concentrations; a similar pattern was observed for bout 2. For bout 1, at 36 mg/mL, the mean post- minus pre-bout difference was 24.1 ng/mL (SD=18.3). Puff topography data were consistent with previous results and revealed few reliable differences across conditions. Discussion This study demonstrates a relationship between ECIG liquid nicotine concentration and user plasma nicotine concentration in experienced ECIG users. Nicotine delivery from some ECIGs may exceed that of a combustible cigarette. The rationale for this higher level of nicotine delivery is uncertain.
Nicotine & Tobacco Research | 2015
Soha Talih; Zainab Balhas; Thomas Eissenberg; Rola Salman; Nareg Karaoghlanian; Ahmad El Hellani; Rima Baalbaki; Najat Saliba; Alan Shihadeh
INTRODUCTION Some electronic cigarette (ECIG) users attain tobacco cigarette-like plasma nicotine concentrations while others do not. Understanding the factors that influence ECIG aerosol nicotine delivery is relevant to regulation, including product labeling and abuse liability. These factors may include user puff topography, ECIG liquid composition, and ECIG design features. This study addresses how these factors can influence ECIG nicotine yield. METHODS Aerosols were machine generated with 1 type of ECIG cartridge (V4L CoolCart) using 5 distinct puff profiles representing a tobacco cigarette smoker (2-s puff duration, 33-ml/s puff velocity), a slow average ECIG user (4 s, 17 ml/s), a fast average user (4 s, 33 ml/s), a slow extreme user (8 s, 17 ml/s), and a fast extreme user (8 s, 33 ml/s). Output voltage (3.3-5.2 V or 3.0-7.5 W) and e-liquid nicotine concentration (18-36 mg/ml labeled concentration) were varied. A theoretical model was also developed to simulate the ECIG aerosol production process and to provide insight into the empirical observations. RESULTS Nicotine yields from 15 puffs varied by more than 50-fold across conditions. Experienced ECIG user profiles (longer puffs) resulted in higher nicotine yields relative to the tobacco smoker (shorter puffs). Puff velocity had no effect on nicotine yield. Higher nicotine concentration and higher voltages resulted in higher nicotine yields. These results were predicted well by the theoretical model (R (2) = 0.99). CONCLUSIONS Depending on puff conditions and product features, 15 puffs from an ECIG can provide far less or far more nicotine than a single tobacco cigarette. ECIG emissions can be predicted using physical principles, with knowledge of puff topography and a few ECIG device design parameters.
Nicotine & Tobacco Research | 2016
Ahmad El-Hellani; Rola Salman; Rachel El-Hage; Soha Talih; Nathalie Malek; Rima Baalbaki; Nareg Karaoghlanian; Rima Nakkash; Alan Shihadeh; Najat Saliba
Introduction Available in hundreds of device designs and thousands of flavors, electronic cigarette (ECIG) may have differing toxicant emission characteristics. This study assesses nicotine and carbonyl yields in the most popular brands in the U.S. market. These products included disposable, prefilled cartridge, and tank-based ECIGs. Methods Twenty-seven ECIG products of 10 brands were procured and their power outputs were measured. The e-liquids were characterized for pH, nicotine concentration, propylene glycol/vegetable glycerin (PG/VG) ratio, and water content. Aerosols were generated using a puffing machine and nicotine and carbonyls were, respectively, quantified using gas chromatograph and high-performance liquid chromatography. A multiregression model was used to interpret the data. Results Nicotine yields varied from 0.27 to 2.91 mg/15 puffs, a range corresponding to the nicotine yield of less than 1 to more than 3 combustible cigarettes. Nicotine yield was highly correlated with ECIG type and brand, liquid nicotine concentration, and PG/VG ratio, and to a lower significance with electrical power, but not with pH and water content. Carbonyls, including the carcinogen formaldehyde, were detected in all ECIG aerosols, with total carbonyl concentrations ranging from 3.72 to 48.85 µg/15 puffs. Unlike nicotine, carbonyl concentrations were mainly correlated with power. Conclusion In 15 puffs, some ECIG devices emit nicotine quantities that exceed those of tobacco cigarettes. Nicotine emissions vary widely across products but carbonyl emissions showed little variations. In spite of that ECIG users are exposed to toxicologically significant levels of carbonyl compounds, especially formaldehyde. Regression analysis showed the importance of design and e-liquid characteristics as determinants of nicotine and carbonyl emissions. Implications Periodic surveying of characteristics of ECIG products available in the marketplace is valuable for understanding population-wide changes in ECIG use patterns over time.
Aerosol Science and Technology | 2017
Soha Talih; Zainab Balhas; Rola Salman; Rachel El-Hage; Nareg Karaoghlanian; Ahmad El-Hellani; Mohamad Baassiri; Ezzat Jaroudi; Thomas Eissenberg; Najat A. Saliba; Alan Shihadeh
ABSTRACT Electronic cigarettes (ECIGs) electrically heat and aerosolize a liquid-containing propylene glycol (PG), vegetable glycerin (VG), flavorants, water, and nicotine. ECIG effects and proposed methods to regulate them are controversial. One regulatory focal point involves nicotine emissions. We describe a mathematical model that predicts ECIG nicotine emissions. The model computes the vaporization rate of individual species by numerically solving the unsteady species and energy conservation equations. To validate model predictions, yields of nicotine, total particulate matter, PG, and VG were measured while manipulating puff topography, electrical power, and liquid composition across 100 conditions. Nicotine flux, the rate at which nicotine is emitted per unit time, was the primary outcome. Across conditions, the measured and computed nicotine flux were highly correlated (r = 0.85, p < .0001). As predicted, device power, nicotine concentration, PG/VG ratio, and puff duration influenced nicotine flux (p < .05), while water content and puff velocity did not. Additional empirical investigation revealed that PG/VG liquids act as ideal solutions, that liquid vaporization accounts for more than 95% of ECIG aerosol mass emissions, and that as device power increases the aerosol composition shifts towards the less volatile components of the parent liquid. To the extent that ECIG regulations focus on nicotine emissions, mathematical models like this one can be used to predict ECIG nicotine emissions and to test the effects of proposed regulation of factors that influence nicotine flux. Copyright
Nicotine & Tobacco Research | 2015
Caroline O. Cobb; Melissa D. Blank; Alejandra Morlett; Alan Shihadeh; Ezzat Jaroudi; Nareg Karaoghlanian; Barbara Kilgalen; Janet Austin; Michael F. Weaver; Thomas Eissenberg
INTRODUCTION Clinical laboratory work among intermittent and daily waterpipe tobacco smokers has revealed significant risks for tobacco dependence and disease associated with waterpipe tobacco smoking (WTS). No studies have compared these groups directly. This study examined whether WTS frequency was associated with differential puff topography, toxicant exposure, and subjective response using a placebo-control design. METHODS Eighty participants reporting WTS of 2-5 episodes (LOW; n = 63) or ≥20 episodes (HIGH; n = 17) per month for ≥6 months completed 2 double-blind, counterbalanced 2-hr sessions that were preceded by ≥12hr of tobacco abstinence. Sessions differed by product smoked ad libitum for 45+ min: preferred brand/flavor of waterpipe tobacco (active) or a flavor-matched tobacco-free waterpipe product (placebo). Outcomes included puff topography, plasma nicotine, carboxyhemoglobin (COHb), and subjective response. RESULTS HIGH users had more puffs, shorter inter-puff-intervals, and a higher total puff volume for placebo relative to active, as well as relative to LOW users during placebo. Plasma nicotine concentrations increased when smoking active (but not placebo) with no significant differences between groups at 25min post-product administration. COHb increased significantly during all conditions; the largest increase was for HIGH users when smoking placebo. There was some evidence of higher baseline scores for nicotine/tobacco nicotine abstinence symptomology. CONCLUSIONS Higher frequency waterpipe users may be more sensitive to the effects of waterpipe smoke nicotine content. Among HIGH users, higher baseline nicotine/tobacco abstinence symptoms may indicate greater nicotine dependence. These data support continued surveillance of WTS and development of dependence measures specific to this product.
Chemical Research in Toxicology | 2017
Soha Talih; Rola Salman; Nareg Karaoghlanian; Ahmad El-Hellani; Najat A. Saliba; Thomas Eissenberg; Alan Shihadeh
An emerging category of electronic cigarettes (ECIGs) is sub-Ohm devices (SODs) that operate at ten or more times the power of conventional ECIGs. Because carcinogenic volatile aldehyde (VA) emissions increase sharply with power, SODs may expose users to greater VAs. In this study, we compared VA emissions from several SODs and found that across device, VAs and power were uncorrelated unless power was normalized by coil surface area. VA emissions and liquid consumed were correlated highly. Analyzed in light of EU regulations limiting ECIG liquid nicotine concentration, these findings suggest potential regulatory levers and pitfalls for protecting public health.
Aerosol Science and Technology | 2017
Mohamad Baassiri; Soha Talih; Rola Salman; Nareg Karaoghlanian; Rawad Saleh; Rachel El Hage; Najat A. Saliba; Alan Shihadeh
ABSTRACT Electronic cigarettes (ECIGs) heat and vaporize a liquid mixture to produce an inhalable aerosol that can deliver nicotine to the user. The liquid mixture is typically composed of propylene glycol (PG) and vegetable glycerin (VG), in which are dissolved trace quantities of flavorants and, usually, nicotine. Due to their different chemical and thermodynamic properties, the proportions of PG and VG in the liquid solution may affect nicotine delivery and user sensory experience. In social media and popular culture, greater PG fraction is associated with greater “throat-hit,” a sensation that has been attributed in cigarette smokers to increased presence of vapor-phase nicotine. VG, on the other hand, is associated with thicker and larger exhaled “clouds.” In this study, we aim to investigate how PG/VG ratio influences variables that relate to nicotine delivery and plume visibility. Aerosols from varying PG/VG liquids were generated using a digitally controlled vaping instrument and a commercially available ECIG, and analyzed for nicotine content by GC-MS. Particle mass and number distribution were determined using a six-stage cascade impactor and a fast particle spectrometer (TSI EEPS), with tightly controlled dilution and sampling biases. A Mie theory model was used to compute the aerosol scattering coefficients in the visible spectrum. Decreasing the PG/VG ratio resulted in a decrease in total particulate matter (TPM) and nicotine yield (R2 > 0.9, p < .0001). Measured particle count median diameter ranged between 44 and 97nm, and was significantly smaller for PG liquids. Although the particle mass concentration was lower, aerosols produced using liquids that contained VG had an order of magnitude greater light scattering coefficients. These findings indicate that PG/VG ratio is a strong determinant of both nicotine delivery and user sensory experience. Copyright
Experimental and Clinical Psychopharmacology | 2017
Marzena M. Hiler; Alison B. Breland; Tory Spindle; Sarah F. Maloney; Thokozeni Lipato; Nareg Karaoghlanian; Alan Shihadeh; Alexa A. Lopez; Carolina Ramôa; Thomas Eissenberg
Electronic cigarette (ECIG) nicotine delivery and other effects may depend on liquid nicotine concentration and user experience. This study is the first to systematically examine the influence of ECIG liquid nicotine concentration and user experience on nicotine delivery, heart rate, puff topography, and subjective effects. Thirty-three ECIG-experienced individuals and 31 ECIG-naïve cigarette smokers completed 4 laboratory conditions consisting of 2, 10-puff bouts (30-sec interpuff interval) with a 3.3-V ECIG battery attached to a 1.5-&OHgr; “cartomizer” (7.3 W) filled with 1 ml ECIG liquid. Conditions differed by liquid nicotine concentration: 0, 8, 18, or 36 mg/ml. Participants’ plasma nicotine concentration was directly related to liquid nicotine concentration and dependent on user experience, with significantly higher mean plasma nicotine increases observed in ECIG-experienced individuals relative to ECIG-naïve smokers in each active nicotine condition. When using 36 mg/ml, mean plasma nicotine increase for ECIG-experienced individuals was 17.9 ng/ml (SD = 17.2) and 6.9 (SD = 7.1; p < .05) for ECIG-naïve individuals. Between-group differences were likely due to longer puffs taken by experienced ECIG users: collapsed across condition, mean puff duration was 5.6 sec (SD = 3.0) for ECIG-experienced and 2.9 (SD = 1.5) for ECIG-naïve individuals. ECIG use also suppressed nicotine/tobacco abstinence symptoms in both groups; the magnitude of abstinence symptom suppression depended on liquid nicotine concentration and user experience. These and other recent results suggest that policies intended to limit ECIG nicotine delivery will need to account for factors in addition to liquid nicotine concentration (e.g., device power and user behavior).
Tobacco Control | 2018
Mohammed Jawad; Thomas Eissenberg; Rola Salman; Eric K. Soule; Karem H. Alzoubi; Omar F. Khabour; Nareg Karaoghlanian; Rima Baalbaki; Rachel El Hage; Najat A. Saliba; Alan Shihadeh
Background Studies that assess waterpipe tobacco smoking behaviour and toxicant exposure generally use controlled laboratory environments with small samples that may not fully capture real-world variability in human behaviour and waterpipe products. This study aimed to conduct real-time sampling of waterpipe tobacco use in natural environments using an in situ device. Methods We used the REALTIME sampling instrument: a validated, portable, self-powered device designed to sample automatically a fixed percentage of the aerosol flowing through the waterpipe mouthpiece during every puff. We recruited participants at café and home settings in Jordan and measured puffing behaviour in addition to inhalation exposure of total particulate matter (TPM), carbon monoxide (CO), nicotine, polycyclic aromatic hydrocarbons and volatile aldehydes. We correlated total inhaled volume with five selected toxicants and calculated the regression line of this relationship. Results Averaged across 79 singleton sessions (52% male, mean age 27.0, 95% home sessions), sessions lasted 46.9 min and participants drew 290 puffs and inhaled 214 L per session. Mean quantities of inhaled toxicants per session were 1910 mg TPM, 259 mg CO, 5.0 mg nicotine, 117 ng benzo[a]pyrene and 198 ng formaldehyde. We found positive correlations between total inhaled volume and TPM (r=0.472; p<0.001), CO (r=0.751; p<0.001), nicotine (r=0.301, p=0.035) and formaldehyde (r=0.526; p<0.001), but a non-significant correlation for benzo[a]pyrene (r=0.289; p=0.056). Conclusions In the natural environment, waterpipe tobacco users inhale large quantities of toxicants that induce tobacco-related disease, including cancer. Toxicant content per waterpipe session is at least equal, but for many toxicants several magnitudes of order higher, than that of a cigarette. Health warnings based on early controlled laboratory studies were well founded; if anything our findings suggest a greater exposure risk.
Nicotine & Tobacco Research | 2016
Alexa A. Lopez; Marzena M. Hiler; Eric K. Soule; Carolina Ramôa; Nareg Karaoghlanian; Thokozeni Lipato; Alison B. Breland; Alan Shihadeh; Thomas Eissenberg