Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rola Salman is active.

Publication


Featured researches published by Rola Salman.


Nicotine & Tobacco Research | 2015

Effects of User Puff Topography, Device Voltage, and Liquid Nicotine Concentration on Electronic Cigarette Nicotine Yield: Measurements and Model Predictions

Soha Talih; Zainab Balhas; Thomas Eissenberg; Rola Salman; Nareg Karaoghlanian; Ahmad El Hellani; Rima Baalbaki; Najat Saliba; Alan Shihadeh

INTRODUCTION Some electronic cigarette (ECIG) users attain tobacco cigarette-like plasma nicotine concentrations while others do not. Understanding the factors that influence ECIG aerosol nicotine delivery is relevant to regulation, including product labeling and abuse liability. These factors may include user puff topography, ECIG liquid composition, and ECIG design features. This study addresses how these factors can influence ECIG nicotine yield. METHODS Aerosols were machine generated with 1 type of ECIG cartridge (V4L CoolCart) using 5 distinct puff profiles representing a tobacco cigarette smoker (2-s puff duration, 33-ml/s puff velocity), a slow average ECIG user (4 s, 17 ml/s), a fast average user (4 s, 33 ml/s), a slow extreme user (8 s, 17 ml/s), and a fast extreme user (8 s, 33 ml/s). Output voltage (3.3-5.2 V or 3.0-7.5 W) and e-liquid nicotine concentration (18-36 mg/ml labeled concentration) were varied. A theoretical model was also developed to simulate the ECIG aerosol production process and to provide insight into the empirical observations. RESULTS Nicotine yields from 15 puffs varied by more than 50-fold across conditions. Experienced ECIG user profiles (longer puffs) resulted in higher nicotine yields relative to the tobacco smoker (shorter puffs). Puff velocity had no effect on nicotine yield. Higher nicotine concentration and higher voltages resulted in higher nicotine yields. These results were predicted well by the theoretical model (R (2) = 0.99). CONCLUSIONS Depending on puff conditions and product features, 15 puffs from an ECIG can provide far less or far more nicotine than a single tobacco cigarette. ECIG emissions can be predicted using physical principles, with knowledge of puff topography and a few ECIG device design parameters.


Toxicology Letters | 2012

In vitro Cytotoxicity and Mutagenicity of Mainstream Waterpipe smoke and its Functional Consequences on Alveolar Type II Derived Cells

Mayyasa Rammah; Farah Dandachi; Rola Salman; Alan Shihadeh; Marwan El-Sabban

INTRODUCTION While waterpipe tobacco smoking has become a global phenomenon, its potential health consequences are poorly understood. In this manuscript, we report the in vitro mutagenicity of waterpipe smoke condensate (WSC), the alteration in cellular parameters of lung alveolar cells in response to WSC exposure and discuss the implication of cellular responses in the pathophysiology of chronic obstructive pulmonary disease (COPD). METHODS The mainstream WSC was generated using a standard laboratory machine protocol. We assessed its mutagenicity using Ames test. In addition, we studied the effect of WSC on the proliferation and cell cycle of alveolar type II cells and vascular endothelial cells. We also assessed the effect of WSC on the expression of genes involved in cell cycle arrest and inflammation. RESULTS Within the range of tested doses, WSC did not elicit sufficient response to be considered mutagenic in any of the strains tested (TA98, TA100, TA102, and TA97a) but were found to be toxic for strains TA97a and TA102 at the highest tested doses. However, WSC induced cell cycle arrest and cellular senescence mediated by the p53-p21 pathway. Also our study indicated that WSC induced an increase in the transcriptional expression of matrix metalloproteinases, MMP-2 and MMP-9 and an immune response regulator, Toll Like Receptor-4. CONCLUSION The data reported here represent the first in vitro demonstration of the effect of waterpipe smoke on cellular parameters providing evidence of the potential involvement of WPS in the pathogenesis of COPD through impairing cellular growth and inducing inflammation.


Toxicology Letters | 2013

In vitro effects of waterpipe smoke condensate on endothelial cell function: A potential risk factor for vascular disease

Mayyasa Rammah; Farah Dandachi; Rola Salman; Alan Shihadeh; Marwan El-Sabban

AIM Despite its increasing popularity, little is known about the health effects of waterpipe smoking (WPS), particularly on the cardiovascular system. To investigate the role of WPS as a risk factor for vascular disease, we evaluated its effect on endothelial cell function, which is an early event in vascular disease pathogenesis. We assessed the changes in cell viability, ROS generation, inflammatory and vasodilatory markers and in vitro angiogenesis of human aortic endothelial cells in response to waterpipe smoke condensate exposure. METHODS AND RESULTS Mainstream waterpipe smoke condensate (WSC) was generated using a standard laboratory machine protocol. Compared to control, WSC induced cell cycle arrest, apoptosis, and oxidative stress in human primary endothelial cells. In addition, we assayed for impaired endothelium-dependent vasodilation and induced inflammation by studying the effect of WPS on the content and activity of AMPK, eNOS proteins and NF-κB p65 ser536 phosphorylation, respectively. WSC inhibited AMPK/eNOS phosphorylation and induced phosphorylation of p65. Moreover, we evaluated endothelial cells repair mechanism related properties that include migration/invasion and in vitro tube formation upon treatment with WSC. WSC reduced the motility and inhibited angiogenic potential of HAEC cells. CONCLUSIONS WPS induced endothelial cell dysfunction as evident by exerting oxidative stress, inflammation, and impaired endothelial vasodilatory function and repair mechanisms. All together these data provide evidence for the potential contribution of WPS to endothelial dysfunction and thus to vascular disease.


Aerosol Science and Technology | 2017

Transport phenomena governing nicotine emissions from electronic cigarettes: Model formulation and experimental investigation

Soha Talih; Zainab Balhas; Rola Salman; Rachel El-Hage; Nareg Karaoghlanian; Ahmad El-Hellani; Mohamad Baassiri; Ezzat Jaroudi; Thomas Eissenberg; Najat A. Saliba; Alan Shihadeh

ABSTRACT Electronic cigarettes (ECIGs) electrically heat and aerosolize a liquid-containing propylene glycol (PG), vegetable glycerin (VG), flavorants, water, and nicotine. ECIG effects and proposed methods to regulate them are controversial. One regulatory focal point involves nicotine emissions. We describe a mathematical model that predicts ECIG nicotine emissions. The model computes the vaporization rate of individual species by numerically solving the unsteady species and energy conservation equations. To validate model predictions, yields of nicotine, total particulate matter, PG, and VG were measured while manipulating puff topography, electrical power, and liquid composition across 100 conditions. Nicotine flux, the rate at which nicotine is emitted per unit time, was the primary outcome. Across conditions, the measured and computed nicotine flux were highly correlated (r = 0.85, p < .0001). As predicted, device power, nicotine concentration, PG/VG ratio, and puff duration influenced nicotine flux (p < .05), while water content and puff velocity did not. Additional empirical investigation revealed that PG/VG liquids act as ideal solutions, that liquid vaporization accounts for more than 95% of ECIG aerosol mass emissions, and that as device power increases the aerosol composition shifts towards the less volatile components of the parent liquid. To the extent that ECIG regulations focus on nicotine emissions, mathematical models like this one can be used to predict ECIG nicotine emissions and to test the effects of proposed regulation of factors that influence nicotine flux. Copyright


Nicotine & Tobacco Research | 2016

Group Waterpipe Tobacco Smoking Increases Smoke Toxicant Concentration

Carolina Ramôa; Alan Shihadeh; Rola Salman; Thomas Eissenberg

INTRODUCTION Waterpipe tobacco smoking is a global health concern. Laboratory research has focused on individual waterpipe users while group use is common. This study examined user toxicant exposure and smoke toxicant yield associated with individual and group waterpipe smoking. METHODS Twenty-two pairs of waterpipe smokers used a waterpipe individually and as a dyad. Before and after smoking, blood was sampled and expired carbon monoxide (CO) measured; puff topography was recorded throughout. One participant from each pair was selected randomly and their plasma nicotine and expired air CO concentrations were compared when smoking alone to when smoking as part of a dyad. Recorded puff topography was used to machine-produce smoke that was analyzed for toxicant content. RESULTS There was no difference in mean plasma nicotine concentration when an individual smoked as part of a dyad (mean = 14.9 ng/ml; standard error of the mean [SEM] = 3.0) compared to when smoking alone (mean = 10.0 ng/ml; SEM = 1.5). An individual smoking as part of as a dyad had, on average, lower CO (mean = 15.8 ppm; SEM = 2.0) compared to when smoking alone (mean= 21.3 ppm; SEM = 2.7). When two participants smoked as a dyad they took, on average, more puffs (mean = 109.8; SEM = 7.6) than a singleton smoker (mean = 77.7; SEM = 8.1) and a shorter interpuff interval (IPI; dyad mean = 23.8 seconds; SEM = 1.9; singleton mean = 40.8 seconds; SEM = 4.8). Higher concentrations of several toxicants were observed in dyad-produced smoke. DISCUSSION Dyad smoking may increase smoke toxicant content, likely due to the dyads shorter IPIs and greater puff number. More work is needed to understand if group waterpipe smoking alters the health risks of waterpipe tobacco smoking. IMPLICATIONS This study is the first to measure toxicants in smoke generated from a waterpipe when used by a dyad. Relative to smoke generated by a singleton, dyad smoke had higher concentration of some toxicants. These differences may be attributed to differences in puffing behavior, specifically the shorter IPI and greater puff number observed in the dyad condition. Relative to singleton smokers, dyad smokers were exposed to less CO, but nicotine exposure did not differ. More work is needed to assess the health effects of inhalation of more toxicant-laden smoke during group waterpipe use.


Chemical Research in Toxicology | 2017

“Juice Monsters”: Sub-Ohm Vaping and Toxic Volatile Aldehyde Emissions

Soha Talih; Rola Salman; Nareg Karaoghlanian; Ahmad El-Hellani; Najat A. Saliba; Thomas Eissenberg; Alan Shihadeh

An emerging category of electronic cigarettes (ECIGs) is sub-Ohm devices (SODs) that operate at ten or more times the power of conventional ECIGs. Because carcinogenic volatile aldehyde (VA) emissions increase sharply with power, SODs may expose users to greater VAs. In this study, we compared VA emissions from several SODs and found that across device, VAs and power were uncorrelated unless power was normalized by coil surface area. VA emissions and liquid consumed were correlated highly. Analyzed in light of EU regulations limiting ECIG liquid nicotine concentration, these findings suggest potential regulatory levers and pitfalls for protecting public health.


Aerosol Science and Technology | 2017

Clouds and “throat hit”: Effects of liquid composition on nicotine emissions and physical characteristics of electronic cigarette aerosols

Mohamad Baassiri; Soha Talih; Rola Salman; Nareg Karaoghlanian; Rawad Saleh; Rachel El Hage; Najat A. Saliba; Alan Shihadeh

ABSTRACT Electronic cigarettes (ECIGs) heat and vaporize a liquid mixture to produce an inhalable aerosol that can deliver nicotine to the user. The liquid mixture is typically composed of propylene glycol (PG) and vegetable glycerin (VG), in which are dissolved trace quantities of flavorants and, usually, nicotine. Due to their different chemical and thermodynamic properties, the proportions of PG and VG in the liquid solution may affect nicotine delivery and user sensory experience. In social media and popular culture, greater PG fraction is associated with greater “throat-hit,” a sensation that has been attributed in cigarette smokers to increased presence of vapor-phase nicotine. VG, on the other hand, is associated with thicker and larger exhaled “clouds.” In this study, we aim to investigate how PG/VG ratio influences variables that relate to nicotine delivery and plume visibility. Aerosols from varying PG/VG liquids were generated using a digitally controlled vaping instrument and a commercially available ECIG, and analyzed for nicotine content by GC-MS. Particle mass and number distribution were determined using a six-stage cascade impactor and a fast particle spectrometer (TSI EEPS), with tightly controlled dilution and sampling biases. A Mie theory model was used to compute the aerosol scattering coefficients in the visible spectrum. Decreasing the PG/VG ratio resulted in a decrease in total particulate matter (TPM) and nicotine yield (R2 > 0.9, p < .0001). Measured particle count median diameter ranged between 44 and 97nm, and was significantly smaller for PG liquids. Although the particle mass concentration was lower, aerosols produced using liquids that contained VG had an order of magnitude greater light scattering coefficients. These findings indicate that PG/VG ratio is a strong determinant of both nicotine delivery and user sensory experience. Copyright


Chemical Research in Toxicology | 2017

Carboxylate Counteranions in Electronic Cigarette Liquids: Influence on Nicotine Emissions

Ahmad El-Hellani; Rachel El-Hage; Rola Salman; Soha Talih; Alan Shihadeh; Najat A. Saliba

The wide pH range reported for electronic cigarette (ECIG) liquids indicates that nicotine may be present in one or more chemical forms. The nicotine form affects the bioavailability and delivery of nicotine from inhaled products. Protonated nicotine is normally associated with counteranions in tobacco products. The chemical and physical properties of counteranions may differently influence the nicotine form and emissions in ECIG aerosols. In this study, we examined how these anions influence nicotine emissions and their evaporation behavior and potential decomposition during ECIG operation. ECIG liquid solutions with equal nicotine concentration and pH but different counteranions (formate, acetate, and citrate) were prepared from analytical standards to assess the effect of the counteranion on nicotine partitioning. High performance liquid and gas chromatography methods were developed to determine the counteranions and the two protonated (NicH+) and free base (Nic) forms of nicotine in commercially available and standard solutions of ECIG liquids and aerosols. In commercial samples, acetate and citrate anions were detected. In standard solutions, both formate and acetate ions were found to evaporate intact, but citrate ion decomposed into formic acid and other products. This study also shows that the identity of the counteranion has no effect on total nicotine emission from ECIG in agreement with previous reports on tobacco cigarettes. However, the partitioning of aerosolized nicotine into NicH+ and Nic is anion-dependent even when the parent liquid pH is held constant. These results indicate that the anions found in a given ECIG product may influence the nicotine delivery profile to the user by enriching aerosols with free-base nicotine as in the case of polycarboxylic acids such as citric acid.


Tobacco Control | 2018

Toxicant inhalation among singleton waterpipe tobacco users in natural settings

Mohammed Jawad; Thomas Eissenberg; Rola Salman; Eric K. Soule; Karem H. Alzoubi; Omar F. Khabour; Nareg Karaoghlanian; Rima Baalbaki; Rachel El Hage; Najat A. Saliba; Alan Shihadeh

Background Studies that assess waterpipe tobacco smoking behaviour and toxicant exposure generally use controlled laboratory environments with small samples that may not fully capture real-world variability in human behaviour and waterpipe products. This study aimed to conduct real-time sampling of waterpipe tobacco use in natural environments using an in situ device. Methods We used the REALTIME sampling instrument: a validated, portable, self-powered device designed to sample automatically a fixed percentage of the aerosol flowing through the waterpipe mouthpiece during every puff. We recruited participants at café and home settings in Jordan and measured puffing behaviour in addition to inhalation exposure of total particulate matter (TPM), carbon monoxide (CO), nicotine, polycyclic aromatic hydrocarbons and volatile aldehydes. We correlated total inhaled volume with five selected toxicants and calculated the regression line of this relationship. Results Averaged across 79 singleton sessions (52% male, mean age 27.0, 95% home sessions), sessions lasted 46.9 min and participants drew 290 puffs and inhaled 214 L per session. Mean quantities of inhaled toxicants per session were 1910 mg TPM, 259 mg CO, 5.0 mg nicotine, 117 ng benzo[a]pyrene and 198 ng formaldehyde. We found positive correlations between total inhaled volume and TPM (r=0.472; p<0.001), CO (r=0.751; p<0.001), nicotine (r=0.301, p=0.035) and formaldehyde (r=0.526; p<0.001), but a non-significant correlation for benzo[a]pyrene (r=0.289; p=0.056). Conclusions In the natural environment, waterpipe tobacco users inhale large quantities of toxicants that induce tobacco-related disease, including cancer. Toxicant content per waterpipe session is at least equal, but for many toxicants several magnitudes of order higher, than that of a cigarette. Health warnings based on early controlled laboratory studies were well founded; if anything our findings suggest a greater exposure risk.


Food and Chemical Toxicology | 2012

Does switching to a tobacco-free waterpipe product reduce toxicant intake? A crossover study comparing CO, NO, PAH, volatile aldehydes, ''tar'' and nicotine yields

Alan Shihadeh; Rola Salman; Ezzat Jaroudi; Najat A. Saliba; Elizabeth Sepetdjian; Melissa D. Blank; Caroline O. Cobb; Thomas Eissenberg

Collaboration


Dive into the Rola Salman's collaboration.

Top Co-Authors

Avatar

Alan Shihadeh

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Najat A. Saliba

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Soha Talih

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Thomas Eissenberg

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Nareg Karaoghlanian

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Ahmad El-Hellani

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Rachel El-Hage

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Ezzat Jaroudi

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Marwan El-Sabban

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Rima Baalbaki

American University of Beirut

View shared research outputs
Researchain Logo
Decentralizing Knowledge