Narendran Sudheendran
University of Houston
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Narendran Sudheendran.
Journal of Biomedical Optics | 2008
Irina V. Larina; Narendran Sudheendran; Mohamad G. Ghosn; James Jiang; Alex Cable; Kirill V. Larin; Mary E. Dickinson
Studying hemodynamic changes during early mammalian embryonic development is critical for further advances in prevention, diagnostics, and treatment of congenital cardiovascular (CV) birth defects and diseases. Doppler optical coherence tomography (OCT) has been shown to provide sensitive measurements of blood flow in avian and amphibian embryos. We combined Doppler swept-source optical coherence tomography (DSS-OCT) and live mouse embryo culture to analyze blood flow dynamics in early embryos. SS-OCT structural imaging was used for the reconstruction of embryo morphology and the orientation of blood vessels, which is required for calculating flow velocity from the Doppler measurements. Spatially and temporally resolved blood flow profiles are presented for the dorsal aorta and a yolk sac vessel in a 9.5-day embryo. We demonstrate that DSS-OCT can be successfully used for structural analysis and spatially and temporally resolved hemodynamic measurements in developing early mammalian embryos.
Journal of Biophotonics | 2009
Mohamad G. Ghosn; Narendran Sudheendran; Mark Wendt; Adrian Glasser; Valery V. Tuchin; Kirill V. Larin
Topical trans-dermal delivery of drugs has proven to be a promising route for treatment of many dermatological diseases. The aim of this study is to monitor and quantify the permeability rate of glucose solutions in rhesus monkey skin noninvasively in vivo as a primate model for drug diffusion. A time-domain Optical Coherence Tomography (OCT) system was used to image the diffusion of glucose in the skin of anesthetized monkeys for which the permeability rate was calculated. From 5 experiments on 4 different monkeys, the permeability for glucose-20% was found to be (4.41 +/- 0.28) 10(-6) cm/sec. The results suggest that OCT might be utilized for the noninvasive study of molecular diffusion in the multilayered biological tissues in vivo.
Journal of Innovative Optical Health Sciences | 2010
Narendran Sudheendran; Mohamed Mohamed; Mohamad G. Ghosn; Valery V. Tuchin; Kirill V. Larin
One of the major challenges in imaging biological tissues using optical techniques, such as optical coherence tomography (OCT), is the lack of light penetration due to highly turbid structures within the tissue. Optical clearing techniques enable the biological samples to be more optically homogeneous, allowing for deeper penetration of light into the tissue. This study investigates the effect of optical clearing utilizing various concentrations of glucose solution (10%, 30%, and 50%) on porcine skin. A gold-plated mirror was imaged beneath the tissue and percentage clearing was determined by monitoring the change in reflected light intensity from the mirror over time. The ratio of percentage clearing per tissue thickness for 10%, 30% and 50% glucose was determined to be 4.7 ± 1.6% mm(-1) (n = 6), 10.6 ± 2.0% mm(-1) (n = 7) and 21.8 ± 2.2% mm(-1) (n = 5), respectively. It was concluded that while higher glucose concentration has the highest optical clearing effect, a suitable concentration should be chosen for the purpose of clearing, considering the osmotic stress on the tissue sample.
Journal of Biomedical Optics | 2012
Irina V. Larina; Saba H. Syed; Narendran Sudheendran; Paul A. Overbeek; Mary E. Dickinson; Kirill V. Larin
Mouse models of ocular diseases provide a powerful resource for exploration of molecular regulation of eye development and pre-clinical studies. Availability of a live high-resolution imaging method for mouse embryonic eyes would significantly enhance longitudinal analyses and high-throughput morphological screening. We demonstrate that optical coherence tomography (OCT) can be used for live embryonic ocular imaging throughout gestation. At all studied stages, the whole eye is within the imaging distance of the system and there is a good optical contrast between the structures. We also performed OCT eye imaging in the embryonic retinoblastoma mouse model Pax6-SV40 T-antigen, which spontaneously forms lens and retinal lesions, and demonstrate that OCT allows us to clearly differentiate between the mutant and wild type phenotypes. These results demonstrate that OCTin utero imaging is a potentially useful tool to study embryonic ocular diseases in mouse models.
Laser Physics | 2009
Mohamad G. Ghosn; Saba H. Syed; N. A. Befrui; Michael Leba; Astha Vijayananda; Narendran Sudheendran; Kirill V. Larin
Alternations in vascular permeability for different molecules, drugs, and contrast agents might be a significant early marker of development of various diseases such as atherosclerosis. However, up to date experimental studies of molecular diffusion across vascular wall have been limited. Recently, we demonstrated that the Optical Coherence Tomography (OCT) technique could be applied for noninvasive and nondestructive quantification of molecular diffusion in different biological tissues. However, the viability of the OCT-based assessment of molecular diffusion should be validated with established methods. This study focused on comparing molecular diffusion rates in vascular tissues measured with OCT and standard fluorescent microscopy. Noninvasive quantification of tetramethylrhodamine (fluorescent dye) permeability in porcine vascular tissues was performed using a fiber-based OCT system. Concurrently, standard histological examination of dye diffusion was performed and quantified with fluorescent microscopy. The permeability of tetramethylrhodamine was found to be (2.08 ± 0.31) × 10−5 cm/s with the fluorescent technique (n = 8), and (2.45 ± 0.46) × 10−5 cm/s with the OCT (n = 3). Good correlation between permeability rates measured by OCT and histology was demonstrated, suggesting that the OCT-based method could be used for accurate, nondestructive assessment of molecular diffusion in multilayered tissues.
Journal of Biomedical Optics | 2013
Narendran Sudheendran; Shameena Bake; Rajesh C. Miranda; Kirill V. Larin
Abstract. The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.
Laser Physics Letters | 2014
Narendran Sudheendran; Ji Qi; Eric D. Young; Alexander J. Lazar; Dina Lev; Raphael E. Pollock; Kirill V. Larin; Wei-Chuan Shih
Current technique for tumor resection requires biopsy of the tumor region and histological confirmation before the surgeon can be certain that the entire tumor has been resected. This confirmation process is time consuming both for the surgeon and the patient and also requires sacrifice of healthy tissue, motivating the development of novel technologies which can enable real-time detection of tumor-healthy tissue boundary for faster and more efficient surgeries. In this study, the potential of combining structural information from optical coherence tomography (OCT) and molecular information from line-scan Raman microscopy (LSRM) for such an application is presented. The results show a clear presence of boundary between myxoid liposarcoma and normal fat which is easily identifiable both from structural and molecular information. In cases where structural images are indistinguishable, for example, in normal fat and well differentiated liposarcoma (WDLS) or gastrointestinal sarcoma tumor (GIST) and myxoma, distinct molecular spectra have been obtained. The results suggest LSRM can effectively complement OCT to tumor boundary demarcation with high specificity.
IEEE Sensors Journal | 2013
Shang Wang; Tim Sherlock; Betsy Salazar; Narendran Sudheendran; Ravi Kiran Manapuram; Katerina Kourentzi; Paul Ruchhoeft; Richard C. Willson; Kirill V. Larin
We demonstrate the feasibility of using optical coherence tomography (OCT) to image and detect 2.8 μm diameter microparticles (stationary and moving) on a highly-reflective gold surface both in clear media and under skin in vitro. The OCT intensity signal can clearly report the microparticle count, and the OCT response to the number of microparticles shows a good linearity. The detect ability of the intensity change (2.9%±0.5%) caused by an individual microparticle shows the high sensitivity of monitoring multiple particles using OCT. An optical sensing method based on this feasibility study is described for continuously measuring blood sugar levels in the subcutaneous tissue, and a molecular recognition unit is designed using competitive binding to modulate the number of bound microparticles as a function of glucose concentration. With further development, an ultra-small, implantable sensor might provide high specificity and sensitivity for long-term continuous monitoring of blood glucose concentration.
Journal of Biomedical Optics | 2016
Chen Wu; Narendran Sudheendran; Manmohan Singh; Irina V. Larina; Mary E. Dickinson; Kirill V. Larin
Abstract. Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on each cross-section image, resulting in the final composited image. The results demonstrate that RI-OCT is able to improve the visualization of internal mouse embryo structures as compared to conventional OCT.
Quantitative imaging in medicine and surgery | 2015
Prathamesh M. Kulkarni; Nicolas Rey-Villamizar; Amine Merouane; Narendran Sudheendran; Shang Wang; Monica D. Garcia; Irina V. Larina; Badrinath Roysam; Kirill V. Larin
BACKGROUND Robust reconstructions of the three-dimensional network of blood vessels in developing embryos imaged by optical coherence tomography (OCT) are needed for quantifying the longitudinal development of vascular networks in live mammalian embryos, in support of developmental cardiovascular research. Past computational methods [such as speckle variance (SV)] have demonstrated the feasibility of vascular reconstruction, but multiple challenges remain including: the presence of vessel structures at multiple spatial scales, thin blood vessels with weak flow, and artifacts resulting from bulk tissue motion (BTM). METHODS In order to overcome these challenges, this paper introduces a robust and scalable reconstruction algorithm based on a combination of anomaly detection algorithms and a parametric dictionary based sparse representation of blood vessels from structural OCT data. RESULTS Validation results using confocal data as the baseline demonstrate that the proposed method enables the detection of vessel segments that are either partially missed or weakly reconstructed using the SV method. Finally, quantitative measurements of vessel reconstruction quality indicate an overall higher quality of vessel reconstruction with the proposed method. CONCLUSIONS Results suggest that sparsity-integrated speckle anomaly detection (SSAD) is potentially a valuable tool for performing accurate quantification of the progression of vascular development in the mammalian embryonic yolk sac as imaged using OCT.