Nariko Arimura
Nagoya University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nariko Arimura.
Cell | 2005
Takeshi Yoshimura; Yoji Kawano; Nariko Arimura; Saeko Kawabata; Akira Kikuchi; Kozo Kaibuchi
Neurons are highly polarized and comprised of two structurally and functionally distinct parts, an axon and dendrites. We previously showed that collapsin response mediator protein-2 (CRMP-2) is critical for specifying axon/dendrite fate, possibly by promoting neurite elongation via microtubule assembly. Here, we showed that glycogen synthase kinase-3beta (GSK-3beta) phosphorylated CRMP-2 at Thr-514 and inactivated it. The expression of the nonphosphorylated form of CRMP-2 or inhibition of GSK-3beta induced the formation of multiple axon-like neurites in hippocampal neurons. The expression of constitutively active GSK-3beta impaired neuronal polarization, whereas the nonphosphorylated form of CRMP-2 counteracted the inhibitory effects of GSK-3beta, indicating that GSK-3beta regulates neuronal polarity through the phosphorylation of CRMP-2. Treatment of hippocampal neurons with neurotrophin-3 (NT-3) induced inactivation of GSK-3beta and dephosphorylation of CRMP-2. Knockdown of CRMP-2 inhibited NT-3-induced axon outgrowth. These results suggest that NT-3 decreases phosphorylated CRMP-2 and increases nonphosphorylated active CRMP-2, thereby promoting axon outgrowth.
Nature Reviews Neuroscience | 2007
Nariko Arimura; Kozo Kaibuchi
After they are born and differentiate, neurons break their previous symmetry, dramatically change their shape, and establish two structurally and functionally distinct compartments — axons and dendrites — within one cell. How do neurons develop their morphologically and molecularly distinct compartments? Recent studies have implicated several signalling pathways evoked by extracellular signals as having essential roles in a number of aspects of neuronal polarization.
Nature Neuroscience | 2001
Naoyuki Inagaki; Kazuyasu Chihara; Nariko Arimura; Céline Ménager; Yoji Kawano; Naruhiro Matsuo; Takashi Nishimura; Mutsuki Amano; Kozo Kaibuchi
In cultured hippocampal neurons, one axon and several dendrites differentiate from a common immature process. Here we found that CRMP-2/TOAD-64/Ulip2/DRP-2 (refs. 2–4) level was higher in growing axons of cultured hippocampal neurons, that overexpression of CRMP-2 in the cells led to the formation of supernumerary axons and that expression of truncated CRMP-2 mutants suppressed the formation of primary axon in a dominant-negative manner. Thus, CRMP-2 seems to be critical in axon induction in hippocampal neurons, thereby establishing and maintaining neuronal polarity.
Journal of Biological Chemistry | 2000
Nariko Arimura; Naoyuki Inagaki; Kazuyasu Chihara; Céline Ménager; Nao Nakamura; Mutsuki Amano; Akihiro Iwamatsu; Yoshio Goshima; Kozo Kaibuchi
We previously identified Rho-associated protein kinase (Rho-kinase) as a specific effector of Rho. In this study, we identified collapsin response mediator protein-2 (CRMP-2), as a novel Rho-kinase substrate in the brain. CRMP-2 is a neuronal protein whose expression is up-regulated during development. Rho-kinase phosphorylated CRMP-2 at Thr-555 in vitro. We produced an antibody that specifically recognizes CRMP-2 phosphorylated at Thr-555. Using this antibody, we found that Rho-kinase phosphorylated CRMP-2 downstream of Rho in COS7 cells. Phosphorylation of CRMP-2 was observed in chick dorsal root ganglion neurons during lysophosphatidic acid (LPA)-induced growth cone collapse, whereas the phosphorylation was not detected during semaphorin-3A-induced growth cone collapse. Both LPA-induced CRMP-2 phosphorylation and LPA-induced growth cone collapse were inhibited by Rho-kinase inhibitor HA1077 or Y-32885. LPA-induced growth cone collapse was also blocked by a dominant negative form of Rho-kinase. On the other hand, semaphorin-3A-induced growth cone collapse was not inhibited by a dominant negative form of Rho-kinase. Furthermore, overexpression of a mutant CRMP-2 in which Thr-555 was replaced by Ala significantly inhibited LPA-induced growth cone collapse. These results demonstrate the existence of Rho-kinase-dependent and -independent pathways for growth cone collapse and suggest that CRMP-2 phosphorylation by Rho-kinase is involved in the former pathway.
Journal of Neurochemistry | 2004
Céline Ménager; Nariko Arimura; Yuko Fukata; Kozo Kaibuchi
Recent experiments in various cell types such as mammalian neutrophils and Dictyostelium discoideum amoebae point to a key role for the lipid product of PI 3‐kinase, PIP3, in determining internal polarity. In neurons, as a consequence of the elongation of one neurite, the axon is specified and the cell acquires its polarity. To test the hypothesis that PI 3‐kinase and PIP3 may play a role in neuronal polarity, and especially in axon specification, we observed localization of PIP3 visualized by Akt‐PH‐GFP in developing hippocampal neurons. We found that PIP3 accumulates in the tip of the growing processes. This accumulation is inhibited by addition of PI 3‐kinase inhibitors. Those inhibitors, consistently with a role of PIP3 in process formation and elongation, delay the transition from stage 1 neurons to stage 3 neurons, and both axon formation and elongation. Moreover, when the immature neurite contacts a bead coated with laminin, a substrate known to induce axon specification, PIP3 accumulates in its growth cone followed by a rapid elongation of the neurite. In such conditions, the addition of PI 3‐kinase inhibitors inhibits both PIP3 accumulation and future axon elongation. These results suggest that PIP3 is involved in axon specification, possibly by stimulating neurite outgrowth. In addition, when a second neurite contacted the beads, this neurite rapidly elongates whereas the elongation of the first laminin‐contacting neurite stops, consistently with the hypothesis of a negative feedback mechanism from the growing future axon to the other neurites.
Molecular and Cellular Biology | 2005
Nariko Arimura; Céline Ménager; Yoji Kawano; Takeshi Yoshimura; Saeko Kawabata; Atsushi Hattori; Yuko Fukata; Mutsuki Amano; Yoshio Goshima; Masaki Inagaki; Nobuhiro Morone; Jiro Usukura; Kozo Kaibuchi
ABSTRACT Collapsin response mediator protein 2 (CRMP-2) enhances the advance of growth cones by regulating microtubule assembly and Numb-mediated endocytosis. We previously showed that Rho kinase phosphorylates CRMP-2 during growth cone collapse; however, the roles of phosphorylated CRMP-2 in growth cone collapse remain to be clarified. Here, we report that CRMP-2 phosphorylation by Rho kinase cancels the binding activity to the tubulin dimer, microtubules, or Numb. CRMP-2 binds to actin, but its binding is not affected by phosphorylation. Electron microscopy revealed that CRMP-2 localizes on microtubules, clathrin-coated pits, and actin filaments in dorsal root ganglion neuron growth cones, while phosphorylated CRMP-2 localizes only on actin filaments. The phosphomimic mutant of CRMP-2 has a weakened ability to enhance neurite elongation. Furthermore, ephrin-A5 induces phosphorylation of CRMP-2 via Rho kinase during growth cone collapse. Taken together, these results suggest that Rho kinase phosphorylates CRMP-2, and inactivates the ability of CRMP-2 to promote microtubule assembly and Numb-mediated endocytosis, during growth cone collapse.
Neuron | 2005
Nariko Arimura; Kozo Kaibuchi
Neurons are highly polarized cells, most of which develop a single axon and several dendrites. These two compartments acquire specific characteristics that enable neurons to transmit intercellular signals from several dendrites to an axon. A wealth of recent studies has shown that PI 3-kinase, Rho family GTPases, the Par complex, and cytoskeleton-related proteins participate in the initial events of neuronal polarization. Here, we review the role of polarity-regulating molecules and the potential mechanisms underlying the specification of an axon and dendrites.
Developmental Cell | 2009
Nariko Arimura; Toshihide Kimura; Shinichi Nakamuta; Shinichiro Taya; Yasuhiro Funahashi; Atsushi Hattori; Akiko Shimada; Céline Ménager; Saeko Kawabata; Kayo Fujii; Akihiro Iwamatsu; Rosalind A. Segal; Mitsunori Fukuda; Kozo Kaibuchi
The neurotrophin receptors TrkA, TrkB, and TrkC are localized at the surface of the axon terminus and transmit key signals from brain-derived neurotrophic factor (BDNF) for diverse effects on neuronal survival, differentiation, and axon formation. Trk receptors are sorted into axons via the anterograde transport of vesicles and are then inserted into axonal plasma membranes. However, the transport mechanism remains largely unknown. Here, we show that the Slp1/Rab27B/CRMP-2 complex directly links TrkB to Kinesin-1, and that this association is required for the anterograde transport of TrkB-containing vesicles. The cytoplasmic tail of TrkB binds to Slp1 in a Rab27B-dependent manner, and CRMP-2 connects Slp1 to Kinesin-1. Knockdown of these molecules by siRNA reduces the anterograde transport and membrane targeting of TrkB, thereby inhibiting BDNF-induced ERK1/2 phosphorylation in axons. Our data reveal a molecular mechanism for the selective anterograde transport of TrkB in axons and show how the transport is coupled to BDNF signaling.
Journal of Biological Chemistry | 2006
Fumiaki Mimura; Satoru Yamagishi; Nariko Arimura; Masashi Fujitani; Takekazu Kubo; Kozo Kaibuchi; Toshihide Yamashita
Myelin-associated glycoprotein (MAG) and Nogo are potent inhibitors of neurite outgrowth from a variety of neurons, and they have been identified as possible components of the central nervous system myelin that prevents axonal regeneration in the adult vertebrate central nervous system. The activation of RhoA and Rho-kinase is reported to be an essential part of the signaling mechanism of these proteins. Here, we report that the collapsing response mediator protein-2 (CRMP-2) is phosphorylated by a Rho-kinase-dependent mechanism downstream of MAG or Nogo-66. The overexpression of the nonphosphorylated form of CRMP-2 at threonine 555, which is the phosphorylation site for Rho-kinase, counteracts the inhibitory effect of MAG on the postnatal cerebellar neurons. Additionally, the expression of the dominant negative form of CRMP-2 or knockdown of the gene using small interference RNA (siRNA) mimics the effect of MAG in vitro. Consistent with the function of CRMP-2, which promotes microtubule assembly, microtubule levels are down-regulated in the cerebellar neurons that are stimulated with MAG in vitro. Reduction in the density of microtubules is also observed in the injured axons following the spinal cord injury, and this effect depends on the Rho-kinase activity. Our data suggest the important roles of CRMP-2 and microtubules in the inhibition of the axon regeneration by the myelin-derived inhibitors.
The Journal of Neuroscience | 2006
Takeshi Yoshimura; Nariko Arimura; Kozo Kaibuchi
A mature neuron is typically polarized both structurally and functionally, with a single long axon and several dendrites. Neuronal polarity is essential for unidirectional signal flow from somata or dendrites to axons. The initial event in establishing a polarized neuron is the specification of a single axon. Early in neuronal development, one immature neurite becomes differentiated from other neurites to form an axon. Although studies in the past two decades have yielded a catalog of structural, molecular, and functional differences between axons and dendrites, we are only now beginning to understand the molecular mechanisms involved in the establishment of neuronal polarity. In the last few years, neuronal polarity-regulating molecules have been revealed. There are two major signaling cascades in neuronal polarization. Several groups, including ours, reported that the phosphatidylinositol 3-kinase (PI3-kinase)/Akt/glycogen synthase kinase-3β (GSK-3β)/collapsin response mediator protein-2 pathway is important for axon specification and elongation. Recent studies have revealed that the positive feedback loop composed of Rho family small GTPases and the Par3/Par6/atypical protein kinase C complex plays a role in the initial events of neuronal polarization downstream of PI3-kinase. Here, we discuss the roles of signaling molecules for axon specification.