Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia A. Belikova is active.

Publication


Featured researches published by Natalia A. Belikova.


Nature Nanotechnology | 2010

Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation

Valerian E. Kagan; Nagarjun V. Konduru; Weihong Feng; Brett L. Allen; Jennifer Conroy; Yuri Volkov; Irina I. Vlasova; Natalia A. Belikova; Naveena Yanamala; Alexander A. Kapralov; Yulia Y. Tyurina; Jingwen Shi; Elena R. Kisin; Ashley R. Murray; Jonathan Franks; Donna B. Stolz; Pingping Gou; Judith Klein-Seetharaman; Bengt Fadeel; Alexander Star; Anna A. Shvedova

We have shown previously that single-walled carbon nanotubes can be catalytically biodegraded over several weeks by the plant-derived enzyme, horseradish peroxidase. However, whether peroxidase intermediates generated inside human cells or biofluids are involved in the biodegradation of carbon nanotubes has not been explored. Here, we show that hypochlorite and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase catalyse the biodegradation of single-walled carbon nanotubes in vitro, in neutrophils and to a lesser degree in macrophages. Molecular modelling suggests that interactions of basic amino acids of the enzyme with the carboxyls on the carbon nanotubes position the nanotubes near the catalytic site. Importantly, the biodegraded nanotubes do not generate an inflammatory response when aspirated into the lungs of mice. Our findings suggest that the extent to which carbon nanotubes are biodegraded may be a major determinant of the scale and severity of the associated inflammatory responses in exposed individuals.


Free Radical Biology and Medicine | 2009

Cytochrome c/cardiolipin relations in mitochondria: a kiss of death

Valerian E. Kagan; Hülya Bayır; Natalia A. Belikova; Olexandr Kapralov; Yulia Y. Tyurina; Vladimir A. Tyurin; Jianfei Jiang; Detcho A. Stoyanovsky; Peter Wipf; Patrick M. Kochanek; Joel S. Greenberger; Bruce R. Pitt; Anna A. Shvedova; Grigory G. Borisenko

Recently, phospholipid peroxidation products gained a reputation as key regulatory molecules and participants in oxidative signaling pathways. During apoptosis, a mitochondria-specific phospholipid, cardiolipin (CL), interacts with cytochrome c (cyt c) to form a peroxidase complex that catalyzes CL oxidation; this process plays a pivotal role in the mitochondrial stage of the execution of the cell death program. This review is focused on redox mechanisms and essential structural features of cyt cs conversion into a CL-specific peroxidase that represent an interesting and maybe still unique example of a functionally significant ligand change in hemoproteins. Furthermore, specific characteristics of CL in mitochondria--its asymmetric transmembrane distribution and mechanisms of collapse, the regulation of its synthesis, remodeling, and fatty acid composition--are given significant consideration. Finally, new concepts in drug discovery based on the design of mitochondria-targeted inhibitors of cyt c/CL peroxidase and CL peroxidation with antiapoptotic effects are presented.


PLOS ONE | 2009

Phosphatidylserine Targets Single-Walled Carbon Nanotubes to Professional Phagocytes In Vitro and In Vivo

Nagarjun V. Konduru; Yulia Y. Tyurina; Weihong Feng; Liana V. Basova; Natalia A. Belikova; Hülya Bayır; Katherine A. Clark; Marc Rubin; Donna B. Stolz; Helen Vallhov; Annika Scheynius; Erika Witasp; Bengt Fadeel; Padmakar D. Kichambare; Alexander Star; Elena R. Kisin; Ashley R. Murray; Anna A. Shvedova; Valerian E. Kagan

Broad applications of single-walled carbon nanotubes (SWCNT) dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid “eat-me” signal, phosphatidylserine (PS), makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c) allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells.


Advanced Drug Delivery Reviews | 2009

Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactions

Valerian E. Kagan; Peter Wipf; Detcho A. Stoyanovsky; Joel S. Greenberger; Grigory G. Borisenko; Natalia A. Belikova; Naveena Yanamala; Alejandro K. Samhan Arias; Muhammad A. Tungekar; Jianfei Jiang; Yulia Y. Tyurina; Jing Ji; Judith Klein-Seetharaman; Bruce R. Pitt; Anna A. Shvedova; Hülya Bayır

Effective regulation of highly compartmentalized production of reactive oxygen species and peroxidation reactions in mitochondria requires targeting of small molecule antioxidants and antioxidant enzymes into the organelles. This review describes recently developed approaches to mitochondrial targeting of small biologically active molecules based on: (i) preferential accumulation in mitochondria because of their hydrophobicity and positive charge (hydrophobic cations), (ii) binding with high affinity to an intra-mitochondrial constituent, and (iii) metabolic conversions by specific mitochondrial enzymes to reveal an active entity. In addition, targeted delivery of antioxidant enzymes via expression of leader sequences directing the proteins into mitochondria is considered. Examples of successful antioxidant and anti-apoptotic protection based on the ability of targeted cargoes to inhibit cytochrome c-catalyzed peroxidation of a mitochondria-specific phospholipid cardiolipin, in vitro and in vivo are presented. Particular emphasis is placed on the employment of triphenylphosphonium- and hemi-gramicidin S-moieties as two effective vehicles for mitochondrial delivery of antioxidants.


Journal of Pharmacology and Experimental Therapeutics | 2006

Structural Requirements for Optimized Delivery, Inhibition of Oxidative Stress, and Antiapoptotic Activity of Targeted Nitroxides

Jianfei Jiang; Igor V. Kurnikov; Natalia A. Belikova; Jingbo Xiao; Qing Zhao; Andrew A. Amoscato; Rebecca Braslau; Armido Studer; Mitchell P. Fink; Joel S. Greenberger; Peter Wipf; Valerian E. Kagan

Suppression of mitochondrial production of reactive oxygen species is a promising strategy against intrinsic apoptosis typical of degenerative diseases. Stable nitroxide radicals such as 4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl (TEMPOL) and its analogs combine several important features, including recycleability, electron acceptance from respiratory complexes, superoxide dismutase mimicry, and radical scavenging. Although successful in antioxidant protection, their effective concentrations are too high for successful in vivo applications. Recently (J Am Chem Soc 127:12460, 2005), we reported that 4-amino 2,2,6,6-tetramethyl-1-piperidinyloxy, covalently conjugated to a five-residue segment of gramicidin S (GS), was integrated into mitochondria and blocked actinomycin D (ActD)-induced superoxide generation and apoptosis. Using a model of ActD-induced apoptosis in mouse embryonic cells, we screened a library of nitroxides to explore structure-activity relationships between their antioxidant/antiapoptotic properties and chemical composition and three-dimensional (3D) structure. High hydrophobicity and effective mitochondrial integration are necessary but not sufficient for high antiapoptotic/antioxidant activity of a nitroxide conjugate. By designing conformationally preorganized peptidyl nitroxide conjugates and characterizing their 3D structure experimentally (circular dichroism and NMR) and theoretically (molecular dynamics), we established that the presence of the β-turn/β-sheet secondary structure is essential for the desired activity. Monte Carlo simulations in model lipid membranes confirmed that the conservation of the d-Phe-Pro reverse turn in hemi-GS analogs ensures the specific positioning of the nitroxide moiety at the mitochondrial membrane interface and maximizes their protective effects. These new insights into the structure-activity relationships of nitroxide-peptide and -peptide isostere conjugates are instrumental for development of new mechanism-based therapeutically effective agents.


Nature Communications | 2011

A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death

Jeffrey Atkinson; Alexandr A. Kapralov; Naveena Yanamala; Yulia Y. Tyurina; Andrew A. Amoscato; Linda L. Pearce; Jim Peterson; Zhentai Huang; Jianfei Jiang; Alejandro K. Samhan-Arias; Akihiro Maeda; Weihong Feng; Karla Wasserloos; Natalia A. Belikova; Vladimir A. Tyurin; Hong Wang; Jackie Fletcher; Y. Wang; Irina I. Vlasova; Judith Klein-Seetharaman; Detcho A. Stoyanovsky; Hülya Bayır; Bruce R. Pitt; Michael W. Epperly; Joel S. Greenberger; Valerian E. Kagan

The risk of radionuclide release in terrorist acts or exposure of healthy tissue during radiotherapy demand potent radioprotectants/radiomitigators. Ionizing radiation induces cell death by initiating the selective peroxidation of cardiolipin in mitochondria by the peroxidase activity of its complex with cytochrome c leading to release of hemoprotein into the cytosol and commitment to the apoptotic program. Here we design and synthesize mitochondria-targeted triphenylphosphonium-conjugated imidazole-substituted oleic and stearic acids which blocked peroxidase activity of cytochrome c/cardiolipin complex by specifically binding to its heme-iron. We show that both compounds inhibit pro-apoptotic oxidative events, suppress cyt c release, prevent cell death, and protect mice against lethal doses of irradiation. Significant radioprotective/radiomitigative effects of imidazole-substituted oleic acid are observed after pretreatment of mice from 1 hr before through 24 hrs after the irradiation.


Journal of Biological Chemistry | 2009

Peroxidase Mechanism of Lipid-dependent Cross-linking of Synuclein with Cytochrome c: PROTECTION AGAINST APOPTOSIS VERSUS DELAYED OXIDATIVE STRESS IN PARKINSON DISEASE*

Hülya Bayır; Alexander A. Kapralov; Jianfei Jiang; Zhentai Huang; Yulia Y. Tyurina; Vladimir A. Tyurin; Qing Zhao; Natalia A. Belikova; Vlasova; Akihiro Maeda; Jian Hui Zhu; Hye Mee Na; Pier G. Mastroberardino; Sparvero Lj; Andrew A. Amoscato; Charleen T. Chu; Greenamyre Jt; Valerian E. Kagan

Damage of presynaptic mitochondria could result in release of proapoptotic factors that threaten the integrity of the entire neuron. We discovered that α-synuclein (Syn) forms a triple complex with anionic lipids (such as cardiolipin) and cytochrome c, which exerts a peroxidase activity. The latter catalyzes covalent hetero-oligomerization of Syn with cytochrome c into high molecular weight aggregates. Syn is a preferred substrate of this reaction and is oxidized more readily than cardiolipin, dopamine, and other phenolic substrates. Co-localization of Syn with cytochrome c was detected in aggregates formed upon proapoptotic stimulation of SH-SY5Y and HeLa cells and in dopaminergic substantia nigra neurons of rotenone-treated rats. Syn-cardiolipin exerted protection against cytochrome c-induced caspase-3 activation in a cell-free system, particularly in the presence of H2O2. Direct delivery of Syn into mouse embryonic cells conferred resistance to proapoptotic caspase-3 activation. Conversely, small interfering RNA depletion of Syn in HeLa cells made them more sensitive to dopamine-induced apoptosis. In human Parkinson disease substantia nigra neurons, two-thirds of co-localized Syn-cytochrome c complexes occurred in Lewy neurites. Taken together, these results indicate that Syn may prevent execution of apoptosis in neurons through covalent hetero-oligomerization of cytochrome c. This immediate protective function of Syn is associated with the formation of the peroxidase complex representing a source of oxidative stress and postponed damage.


Molecular Pharmacology | 2006

Mechanisms of cardiolipin oxidation by cytochrome c : Relevance to Pro- and antiapoptotic functions of etoposide

Yulia Y. Tyurina; Vidisha Kini; Vladimir A. Tyurin; Irina I. Vlasova; Jianfei Jiang; Alexander A. Kapralov; Natalia A. Belikova; Jack C. Yalowich; Igor V. Kurnikov; Valerian E. Kagan

Execution of apoptotic program in mitochondria is associated with accumulation of cardiolipin peroxidation products required for the release of proapoptotic factors into the cytosol. This suggests that lipid antioxidants capable of inhibiting cardiolipin peroxidation may act as antiapoptotic agents. Etoposide, a widely used antitumor drug and a topoisomerase II inhibitor, is a prototypical inducer of apoptosis and, at the same time, an effective lipid radical scavenger and lipid antioxidant. Here, we demonstrate that cardiolipin oxidation during apoptosis is realized not via a random cardiolipin peroxidation mechanism but rather proceeds as a result of peroxidase reaction in a tight cytochrome c/cardiolipin complex that restrains interactions of etoposide with radical intermediates generated in the course of the reaction. Using low-temperature and ambient-temperature electron paramagnetic resonance spectroscopy of H2O2-induced protein-derived (tyrosyl) radicals and etoposide phenoxyl radicals, respectively, we established that cardiolipin peroxidation and etoposide oxidation by cytochrome c/cardiolipin complex takes place predominantly on protein-derived radicals of cytochrome c. We further show that etoposide can inhibit cytochrome c-catalyzed oxidation of cardiolipin competing with it as a peroxidase substrate. Peroxidase reaction of cytochrome c/cardiolipin complexes causes cross-linking and oligomerization of cytochrome c. With nonoxidizable tetraoleoyl-cardiolipin, the cross-linking occurs via dityrosine formation, whereas bifunctional lipid oxidation products generated from tetralinoleoyl-cardiolipin participate in the production of high molecular weight protein aggregates. Protein aggregation is effectively inhibited by etoposide. The inhibition of cardiolipin peroxidation by etoposide, however, is realized at far higher concentrations than those at which it induces apoptotic cell death. Thus, oxidation of cardiolipin by the cytochrome c/cardiolipin peroxidase complex, which is essential for apoptosis, is not inhibited by proapoptotic concentrations of the drug.


Biochemical and Biophysical Research Communications | 2008

Interplay Between Bax, Reactive Oxygen Species Production And Cardiolipin Oxidation During Apoptosis

Jianfei Jiang; Zhentai Huang; Qing Zhao; Weihong Feng; Natalia A. Belikova; Valerian E. Kagan

Bax/Bak activation and cardiolipin peroxidation are essential for cytochrome c release during apoptosis, yet, the link between them remains elusive. We report that sequence of events after exposure of mouse embryonic fibroblast (MEF) cells to actinomycin D followed the order: Bax translocation-->superoxide production-->cardiolipin peroxidation. Genetic ablation of Bax/Bak inhibited actinomycin D induced superoxide production and cardiolipin peroxidation. Rotenone caused robust superoxide generation but did not trigger cardiolipin peroxidation in Bax/Bak double knockout MEF cells. This suggests that, in addition to participating in ROS generation, Bax/Bak play another specific role in cardiolipin oxidation. In isolated mitochondria, recombinant Bax enhanced succinate induced cardiolipin oxidation and cytochrome c release. Mitochondrial peroxidase activity, likely involved in cardiolipin peroxidation, was enhanced upon incubation with recombinant Bax. Thus, cardiolipin peroxidation may be causatively and time-dependently related to Bax/Bak effects on ROS generation and peroxidase activation of cytochrome c.


Radiation Research | 2009

A Mitochondria-Targeted Triphenylphosphonium-Conjugated Nitroxide Functions as a Radioprotector/Mitigator

Jianfei Jiang; Detcho A. Stoyanovsky; Natalia A. Belikova; Yulia Y. Tyurina; Qing Zhao; Muhammad A. Tungekar; Valentyna I. Kapralova; Zhentai Huang; Arlan Mintz; Joel S. Greenberger; Valerian E. Kagan

Abstract Jiang, J., Stoyanovsky, D. A., Belikova, N. A., Tyurina, Y. Y., Zhao, Q., Tungekar, M. A., Kapralova, V., Huang, Z., Mintz, A. H., Greenberger, J. S. and Kagan, V. E. A Mitochondria-Targeted Triphenylphosphonium-Conjugated Nitroxide Functions as a Radioprotector/Mitigator. Removal of excessive mitochondrial reactive oxygen species by electron scavengers and antioxidants is a promising therapeutic strategy to reduce the detrimental effects of radiation exposure. Here we exploited triphenylphosphonium (TPP) cation as a means to target nitroxide radicals to mitochondria. We synthesized a library of TPP-conjugated nitroxides and tested their radioprotective effects in γ-irradiated mouse embryo cells and human epithelial BEAS-2B cells. Cells were incubated with conjugates either before or after irradiation. We found that [2-(1-oxyl-2,2,6,6-tetramethyl-piperidin-4-ylimino)-ethyl]-triphenyl-phosphonium (TPEY-Tempo) significantly blocked radiation-induced apoptosis as revealed by externalization of phosphatidylserine on the cell surface and inhibition of cytochrome c release from mitochondria. Using electron paramagnetic resonance, we showed that TPEY-Tempo was integrated into cells and mitochondria, where it underwent one-electron reduction to hydroxylamine. TPEY-Tempo acted as an electron scavenger that prevented superoxide generation and cardiolipin oxidation in mitochondria. Finally, TPEY-Tempo increased the clonogenic survival rate of irradiated cells. The cellular integration efficiencies of nonradioprotective TPP conjugates, including Mito-Tempo (Alexis, San Diego, CA), were markedly lower, although these homologues were integrated into isolated succinate-energized mitochondria to a similar extent as TPEY-Tempo. We conclude that mitochondrial targeting of TPP-conjugated nitroxides represents a promising approach for the development of novel radioprotectors.

Collaboration


Dive into the Natalia A. Belikova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianfei Jiang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hülya Bayır

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Peter Wipf

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Zhao

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge