Natália B. Carvalho
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natália B. Carvalho.
Journal of Immunology | 2008
Gilson Costa Macedo; Diogo Matos Magnani; Natália B. Carvalho; Oscar Bruna-Romero; Ricardo T. Gazzinelli; Sergio C. Oliveira
Brucella abortus is a facultative intracellular bacterium that infects humans and domestic animals. The enhanced susceptibility to virulent B. abortus observed in MyD88 knockout (KO) mice led us to investigate the mechanisms involved in MyD88-dependent immune responses. First, we defined the role of MyD88 in dendritic cell (DC) maturation. In vitro as well as in vivo, B. abortus-exposed MyD88 KO DCs displayed a significant impairment on maturation as observed by expression of CD40, CD86, and MHC class II on CD11c+ cells. In addition, IL-12 and TNF-α production was totally abrogated in MyD88 KO DCs and macrophages. Furthermore, B. abortus-induced IL-12 production was found to be dependent on TLR2 in DC, but independent on TLR2 and TLR4 in macrophages. Additionally, we investigated the role of exogenous IL-12 and TNF-α administration on MyD88 KO control of B. abortus infection. Importantly, IL-12, but not TNF-α, was able to partially rescue host susceptibility in MyD88 KO-infected animals. Furthermore, we demonstrated the role played by TLR9 during virulent B. abortus infection. TLR9 KO-infected mice showed 1 log Brucella CFU higher than wild-type mice. Macrophages and DC from TLR9 KO mice showed reduced IL-12 and unaltered TNF-α production when these cells were stimulated with Brucella. Together, these results suggest that susceptibility of MyD88 KO mice to B. abortus is due to impaired DC maturation and lack of IL-12 synthesis. Additionally, DC activation during Brucella infection plays an important regulatory role by stimulating and programming T cells to produce IFN-γ.
Microbes and Infection | 2008
Sergio C. Oliveira; Fernanda S. Oliveira; Gilson Costa Macedo; Leonardo A. de Almeida; Natália B. Carvalho
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Toll-like receptors (TLRs) recognize Brucella spp. and bacterial components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella infection. TLR2, TLR4 and TLR9 have been implicated in host interactions with Brucella; however, TLR9 has the most prominent role. Further, the relationship between specific Brucella molecules and various signal transduction pathways needs to be better understood. MyD88-dependent and TRIF-independent signaling pathways are involved in Brucella activation of innate immune cells through TLRs. We have recently reported the critical role of MyD88 molecule in dendritic cell maturation and interleukin-12 production during B. abortus infection. This article discusses recent studies on TLR signaling and also highlights the contribution of NOD and type I IFN receptors during Brucella infection. The better understanding of the role by such innate immune receptors in bacterial infection is critical in host-pathogen interactions.
PLOS ONE | 2011
Leonardo A. de Almeida; Natália B. Carvalho; Fernanda S. Oliveira; Thaís Lourdes Santos Lacerda; A.C. Vasconcelos; Lucas Nogueira; André Báfica; Aristóbolo M. Silva; Sergio C. Oliveira
Type I interferons (IFNs) are cytokines that orchestrate diverse immune responses to viral and bacterial infections. Although typically considered to be most important molecules in response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. In this study, we addressed the role of type I IFN signaling during Brucella abortus infection, a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Herein, we have shown that B. abortus induced IFN-β in macrophages and splenocytes. Further, IFN-β induction by Brucella was mediated by IRF3 signaling pathway and activates IFN-stimulated genes via STAT1 phosphorylation. In addition, IFN-β expression induced by Brucella is independent of TLRs and TRIF signaling but MyD88-dependent, a pathway not yet described for Gram-negative bacteria. Furthermore, we have identified Brucella DNA as the major bacterial component to induce IFN-β and our study revealed that this molecule operates through a mechanism dependent on RNA polymerase III to be sensed probably by an unknown receptor via the adaptor molecule STING. Finally, we have demonstrated that IFN-αβR KO mice are more resistant to infection suggesting that type I IFN signaling is detrimental to host control of Brucella. This resistance phenotype is accompanied by increased IFN-γ and NO production by IFN-αβR KO spleen cells and reduced apoptosis.
Journal of Immunology | 2010
Karina A. Pasquevich; Clara García Samartino; Lorena M. Coria; Silvia M. Estein; Astrid Zwerdling; Andrés E. Ibañez; Paula Barrionuevo; Fernanda S. Oliveira; Natália B. Carvalho; Julia Borkowski; Sergio C. Oliveira; Heribert Warzecha; Guillermo H. Giambartolomei; Juliana Cassataro
Knowing the inherent stimulatory properties of the lipid moiety of bacterial lipoproteins, we first hypothesized that Brucella abortus outer membrane protein (Omp)16 lipoprotein would be able to elicit a protective immune response without the need of external adjuvants. In this study, we demonstrate that Omp16 administered by the i.p. route confers significant protection against B. abortus infection and that the protective response evoked is independent of the protein lipidation. To date, Omp16 is the first Brucella protein that without the requirement of external adjuvants is able to induce similar protection levels to the control live vaccine S19. Moreover, the protein portion of Omp16 (unlipidated Omp16 [U-Omp16]) elicits a protective response when administered by the oral route. Either systemic or oral immunization with U-Omp16 elicits a Th1-specific response. These abilities of U-Omp16 indicate that it is endowed with self-adjuvanting properties. The adjuvanticity of U-Omp16 could be explained, at least in part, by its capacity to activate dendritic cells in vivo. U-Omp16 is also able to stimulate dendritic cells and macrophages in vitro. The latter property and its ability to induce a protective Th1 immune response against B. abortus infection have been found to be TLR4 dependent. The facts that U-Omp16 is an oral protective Ag and possesses a mucosal self-adjuvanting property led us to develop a plant-made vaccine expressing U-Omp16. Our results indicate that plant-expressed recombinant U-Omp16 is able to confer protective immunity, when given orally, indicating that a plant-based oral vaccine expressing U-Omp16 could be a valuable approach to controlling this disease.
Infection and Immunity | 2010
Cyntia Cardoso Trant; Thais Lourdes Santos Lacerda; Natália B. Carvalho; Vasco Azevedo; Grácia Maria Soares Rosinha; Suzana P. Salcedo; Jean-Pierre Gorvel; Sergio C. Oliveira
ABSTRACT Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that can function as virulence factors to better understand the host-pathogen interplay. Herein, we identified the gene encoding the phosphoglycerate kinase (PGK) of B. abortus strain 2308. To test the role of PGK in Brucella pathogenesis, a pgk deletion mutant was constructed. Replacement of the wild-type pgk by recombination was demonstrated by Southern and Western blot analyses. The B. abortus Δpgk mutant strain exhibited extreme attenuation in bone marrow-derived macrophages and in vivo in BALB/c, C57BL/6, 129/Sv, and interferon regulatory factor-1 knockout (IRF-1 KO) mice. Additionally, at 24 h postinfection the Δpgk mutant was not found within the same endoplasmic reticulum-derived compartment as the wild-type bacteria, but, instead, over 60% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP1. Furthermore, the B. abortus Δpgk deletion mutant was used as a live vaccine. Challenge experiments revealed that the Δpgk mutant strain induced protective immunity in 129/Sv or IRF-1 KO mice that was superior to the protection conferred by commercial strain 19 or RB51. Finally, the results shown here demonstrated that Brucella PGK is critical for full bacterial virulence and that a Δpgk mutant may serve as a potential vaccine candidate in future studies.
PLOS ONE | 2013
Patricia P. Corsetti; Leonardo A. de Almeida; Natália B. Carvalho; Vasco Azevedo; Teane M. A. Silva; Henrique Couto Teixeira; Ana Maria Caetano Faria; Sergio C. Oliveira
IL-10 is a cytokine that regulates the balance between pathogen clearance and immunopathology. Brucella abortus is an intracellular bacterium that causes chronic disease in humans and domestic animals. Here we evaluated the contribution of IL-10 in host immune response and pathology during B. abortus infection. To assess the role of IL-10 in vivo, IL-10 knockout (KO) or 129 Sv/Ev (wild-type) mice were infected with B. abortus and the number of viable bacteria from the spleen was determined at 1, 2, 3, 6 and 14-weeks postinfection. IL-10 KO mice showed reduced bacterial loads in the spleen when compared to wild-type mice during all time points studied. Additionally, at 14-weeks postinfection IL-10 KO mice had totally cleared the infection. This clearance was preceded by an enhanced IFN-γ, TNF-α and IL-17 responses in both the serum and the spleen of IL-10 KO mice. Additionally, dendritic cells from infected IL-10 KO mice produced elevated levels of IL-12 and TNF-α compared to wild-type animals. Histopathology analysis was performed and both KO and wild-type mice developed multifocal granulomas and necrosis in the liver. However, at six-weeks postinfection reduced numbers of granulomas was detected in IL-10 KO mice compared to wild-type animals. This reduced liver pathology at later stage of infection was accompanied by increased numbers of CD4+CD25+foxp3+ T cells and expression of TGF-β in IL-10 KO splenocytes. Taken together, our findings demonstrate that IL-10 modulates the proinflammatory immune response to B. abortus infection and the lack of IL-10 increases resistance to Brucella infection.
Clinical & Developmental Immunology | 2012
Ana Paula Macedo de Souza Brandão; Fernanda S. Oliveira; Natália B. Carvalho; Leda Quercia Vieira; Vasco Azevedo; Gilson Costa Macedo; Sergio C. Oliveira
Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. IFN-γ, IL-12, and CD8+ T lymphocytes are important components of host immune responses against B. abortus. Herein, IFN-γ and IL-12/β2-microglobulin (β2-m) knockout mice were used to determine whether CD8+ T cells and IL-12-dependent IFN-γ deficiency would be more critical to control B. abortus infection compared to the lack of endogenous IFN-γ. At 1 week after infection, IFN-γ KO and IL-12/β2-m KO mice showed increased numbers of bacterial load in spleens; however, at 3 weeks postinfection (p.i.), only IFN-γ KO succumbed to Brucella. All IFN-γ KO had died at 16 days p.i. whereas death within the IL-12/β2-m KO group was delayed and occurred at 32 days until 47 days postinfection. Susceptibility of IL-12/β2-m KO animals to Brucella was associated to undetectable levels of IFN-γ in mouse splenocytes and inability of these cells to lyse Brucella-infected macrophages. However, the lack of endogenous IFN-γ was found to be more important to control brucellosis than CD8+ T cells and IL-12-dependent IFN-γ deficiencies.
Infection and Immunity | 2011
Natália B. Carvalho; Fernanda S. Oliveira; Fernanda do Valle Durães; Leonardo A. de Almeida; Manuela Flórido; Luana Oliveira Prata; Marcelo Vidigal Caliari; Rui Appelberg; Sergio C. Oliveira
ABSTRACT To investigate the role of Toll-like receptor 9 (TLR9) in innate immunity to Mycobacterium avium, TLR9, TLR2, and MyD88 knockout (KO) mice were infected with this bacterium. Bacterial burdens were higher in the spleens, livers, and lungs of infected TLR9 KO mice than in those of C57BL/6 mice, indicating that TLR9 is required for efficient control of M. avium infection. However, TLR9 KO or TLR2 KO spleen cells displayed normal M. avium-induced tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) responses. This finding was confirmed by determining the number of splenic CD4+ T cells producing IFN-γ by flow cytometry. Furthermore, TLR2 and MyD88, but not TLR9, played a major role in interleukin-12 and TNF-α production by M. avium-infected macrophages and dendritic cells (DCs). We also found that major histocompatibility complex class II molecule expression on DCs is regulated by TLR2 and MyD88 signaling but not by TLR9. Finally, lack of TLR9, TLR2, or MyD88 reduced the numbers of macrophages, epithelioid cells, and lymphocytes in M. avium-induced granulomas but only MyD88 deficiency affected the number of liver granulomas. In summary, our data demonstrated that the involvement of TLR9 in the control of M. avium infection is not related to the induction of Th1 responses.
Immunology Letters | 2009
Fernanda do Valle Durães; Natália B. Carvalho; Tatiane Teixeira de Melo; Sergio C. Oliveira; Cristina Toscano Fonseca
Schistosoma mansoni schistosomula are the most susceptible parasite life stage to host immune system attack. Complex host-parasite interactions take place on Schistosoma tegument, which is a unique double membrane structure involved in nutrition and immune evasion. Herein, we have demonstrated that schistosomula tegument (Smteg) activates Dendritic cells to produce IL-12p40, TNF-alpha and also to up-regulate the co-stimulatory molecules CD40 and CD86. Moreover, using DCs derived from MyD88-, TLR2-, TLR4- and TLR9-deficient mice we have shown that the ability of Smteg to activate DCs to produce IL-12 and TNF-alpha involves TLR4/Smteg interaction and MyD88 signaling pathway. Finally, our findings lead us to conclude that TLR4 is a key receptor involved in Smteg induction of pro-inflammatory cytokines.
Infection and Immunity | 2011
Fernanda S. Oliveira; Natália B. Carvalho; Ana Paula Macedo de Souza Brandão; Marco Túlio R. Gomes; Leonardo A. de Almeida; Sergio C. Oliveira
ABSTRACT Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Recent studies have revealed that Toll-like receptor (TLR)-initiated immune response to Brucella spp. depends on myeloid differentiation factor 88 (MyD88) signaling. Therefore, we decided to study the role of the interleukin-1 receptor-associated kinase 4 (IRAK-4) in host innate immune response against B. abortus. After Brucella infection, it was shown that the number of CFU in IRAK-4−/− mice was high compared to that in IRAK-4+/− animals only at 1 week postinfection. At 3 and 6 weeks postinfection, IRAK-4−/− mice were able to control the infection similarly to heterozygous animals. Furthermore, the type 1 cytokine profile was evaluated. IRAK-4−/− mice showed lower production of systemic interleukin-12 (IL-12) and gamma interferon (IFN-γ). Additionally, a reduced percentage of CD4+ and CD8+ T cells expressing IFN-γ was observed compared to IRAK-4+/−. Further, the production of IL-12 and tumor necrosis factor alpha (TNF-α) by macrophages and dendritic cells from IRAK-4−/− mice was abolished at 24 h after stimulation with B. abortus. To investigate the role of IRAK-4 in mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways, macrophages were stimulated with B. abortus, and the signaling components were analyzed by protein phosphorylation. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 and p38 as well as p65 NF-κB phosphorylation was profoundly impaired in IRAK-4−/− and MyD88−/− macrophages activated by Brucella. In summary, the results shown in this study demonstrated that IRAK-4 is critical to trigger the initial immune response against B. abortus but not at later phases of infection.