Natalia E. Suzina
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natalia E. Suzina.
International Journal of Systematic and Evolutionary Microbiology | 2000
Svetlana N. Dedysh; Werner Liesack; V. N. Khmelenina; Natalia E. Suzina; Yuri A. Trotsenko; Jeremy D. Semrau; Amy M. Bares; Nicolai S. Panikov; James M. Tiedje
A new genus, Methylocella, and a new species, Methylocella palustris, are proposed for three strains of methane-oxidizing bacteria isolated from acidic Sphagnum peat bogs. These bacteria are aerobic, Gram-negative, colourless, non-motile, straight and curved rods that utilize the serine pathway for carbon assimilation, multiply by normal cell division and contain intracellular poly-beta-hydroxybutyrate granules (one at each pole). These strains use methane and methanol as sole sources of carbon and energy and are moderately acidophilic organisms with growth between pH 4.5 and pH 7.0, the optimum being at pH 5.0-5.5. The temperature range for growth is 10-28 degrees C with the optimum at 15-20 degrees C. The intracytoplasmic membrane system is different from those of type I and II methanotrophs. Cells contain an extensive periplasmic space and a vesicular membrane system connected to the cytoplasmic membrane. The strains grew only on media with a low salt content (0.2-0.5 g l(-1)). All three strains were found to possess soluble methane monooxygenase and are able to fix atmospheric nitrogen via an oxygen-sensitive nitrogenase. No products were observed in a PCR with particulate methane monooxygenase-targeted primers; hybridization with a pmoA probe was also negative. The major phospholipid fatty acids are 18:1 acids. The G+C content of the DNA is 61.2 mol%. The three strains share identical 16S rRNA gene sequences and represent a novel lineage of methane-oxidizing bacteria within the alpha-subclass of the class Proteobacteria and are only moderately related to type II methanotrophs of the Methylocystis-Methylosinus group. The three strains are most closely related to the acidophilic heterotrophic bacterium Beijerinckia indica subsp. indica (96.5% 16S rDNA sequence similarity). Collectively, these strains comprise a new species and genus Methylocella palustris gen. nov., sp. nov.; strain KT (= ATCC 700799T) is the type strain.
International Journal of Systematic and Evolutionary Microbiology | 2002
Svetlana N. Dedysh; V. N. Khmelenina; Natalia E. Suzina; Yuri A. Trotsenko; Jeremy D. Semrau; Werner Liesack; James M. Tiedje
A novel genus and species, Methylocapsa acidiphila gen. nov., sp. nov., are proposed for a methane-oxidizing bacterium isolated from an acidic Sphagnum peat bog. This bacterium, designated strain B2T, represents aerobic, gram-negative, colourless, non-motile, curved coccoids that form conglomerates covered by an extracellular polysaccharide matrix. The cells use methane and methanol as sole sources of carbon and energy and utilize the serine pathway for carbon assimilation. Strain B2T is a moderately acidophilic organism with growth between pH 4.2 and 7.2 and at temperatures from 10 to 30 degrees C. The cells possess a well-developed system of intracytoplasmic membranes (ICM) packed in parallel on only one side of the cell membrane. This type of ICM structure represents a novel arrangement, which was termed type III. The resting cells are Azotobacter-type cysts. Strain B2T is capable of atmospheric nitrogen fixation; it possesses particulate methane monooxygenase and does not express soluble methane monooxygenase. The major phospholipid fatty acid is 18:1omega7c and the major phospholipids are phosphatidylglycerols. The G+C content of the DNA is 63.1 mol%. This bacterium belongs to the alpha-subclass of the Proteobacteria and is most closely related to the acidophilic methanotroph Methylocella palustris KT (97.3% 16S rDNA sequence similarity). However, the DNA-DNA hybridization value between strain B2T and Methylocella palustris K(T) is only 7%. Thus, strain B2T is proposed to comprise a novel genus and species, Methylocapsa acidiphila gen. nov., sp. nov. Strain B2T (= DSM 13967T = NCIMB 13765T) is the type strain.
Archives of Microbiology | 1999
V. N. Khmelenina; Marina G. Kalyuzhnaya; Valentin G. Sakharovsky; Natalia E. Suzina; Yuri A. Trotsenko; Gerhard Gottschalk
Abstract By using 1H- and 13C-NMR spectroscopy, an accumulation of sucrose and two cyclic amino acids [ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) and 5-oxoproline (pyrrolidone carboxylic acid)] was detected in the halotolerant methanotrophs Methylobacter alcaliphilus 20Z and Methylobacter modestohalophilus 10S. The organic solute pool was found to increase upon raising the NaCl concentration. In M. alcaliphilus 20Z, the intracellular level of the total solutes was shown to be sufficient to balance the osmotic pressure of the medium, whereas in M. modestohalophilus 10S their content was several times lower. Additionally, phosphatidylglycerol and phosphatidylcholine were predominant cell phospholipids in salt-adapted M. alcaliphilus 20Z. However, no phosphatidylcholine was found in M. modestohalophilus 10S, and the portion of phosphatidylglycerol increased while phosphatidylethanolamine decreased upon elevated external NaCl concentrations. Regularly arranged glycoprotein surface layers (S-layers) of hexagonal and linear (p2) symmetry were observed on the outer cell walls of M. alcaliphilus 20Z and M. modestohalophilus 10S. The S-layer in M alcaliphilus 20Z consisting of tightly packed, cup-shaped subunits was lost during growth at pH 7.2 (the lowest possible pH) in the absence of NaCl. Hence, osmoadaptation in the methanotrophs studied involves structure/function alterations of cell envelopes and changes in the chemical composition of membranes as well as de novo synthesis of compatible solutes.
Current Microbiology | 1997
V. N. Khmelenina; Marina G. Kalyuzhnaya; Natalia G. Starostina; Natalia E. Suzina; Yuri A. Trotsenko
Abstract. Two strains (5Z and 20Z) of halotolerant alkaliphilic obligate methanotrophic bacteria were first isolated from moderately saline soda lakes in Tuva (Central Asia). The strains grow fastest at pH 9.0–9.5 and much more slowly at pH 7.0. No growth occurred at pH ≤ 6.8. They require NaHCO3 or NaCl for growth in alkaline medium. Gram-negative, motile rods with ordered cup-shaped cell wall structures and Type I intracytoplasmic membranes assimilate methane and methanol via the ribulose monophosphate pathway. The G + C content of strains 5Z and 20Z are 47.6 and 47.9 mol%, respectively. Based on their alkaliphilic physiology, both strains were referred to as Methylobacter alcaliphilus sp. nov. The changes in cell phospholipids, fatty acids, and amino acids have been observed upon varying salinity and pH of the medium, thus suggesting structure-function osmoadaptation of the strains studied. Whole-cell experiments revealed the salt- and pH-dependence of CH4 oxidation and assimilation rates. Cell motility was also Na+ dependent and sensitive to some energy uncouplers and ionophores.
Systematic and Applied Microbiology | 2001
Marina Kaluzhnaya; V. N. Khmelenina; Bulat Ts. Eshinimaev; Natalia E. Suzina; Dimitry Nikitin; Alexander S. Solonin; Ju-Ling Lin; Ian R. McDonald; Colin J. Murrell; Yuri A. Trotsenko
Five strains of obligate methanotrophic bacteria (4G, 5G, 6G, 7G and 5B) isolated from bottom sediments of Southeastern Transbaikal soda lakes (pH 9.5-10.5) are taxonomically described. These bacteria are aerobic, Gram-negative monotrichous rods having tightly packed cup-shaped structures on the outer cell wall surface (S-layers) and Type I intracytoplasmic membranes. All the isolates possess particulate methane monooxygenase (pMMO) and one strain (5G) also contains soluble methane monooxygenase (sMMO). They assimilate methane and methanol via the ribulose monophosphate pathway (RuMP). The isolates are alkalitolerant or facultatively alkaliphilic, able to grow at pH 10.5-11.0 and optimally at pH 8.5-9.5. These organisms are obligately dependent on the presence of sodium ions in the growth medium and tolerate up to 0.9-1.4 M NaCl or 1 M NaHCO3. Although being mesophilic, all the isolates are resistant to heating (80 degrees C, 20 min), freezing and drying. Their cellular fatty acids profiles primarily consist of C(16:1). The major phospholipids are phosphatidylethanolamine and phosphatidylglycerol. The main quinone is Q-8. The DNA G+C content ranges from 49.2-51.5 mol %. Comparative 16S rDNA sequencing showed that the newly isolated methanotrophs are related to membres of the Methylomicrobium genus. However, they differ from the known members of this genus by DNA-DNA relatedness. Based on pheno- and genotypic characteristics, we propose a new species of the genus Methylomicrobium Methylomicrobium buryatense sp. nov.
Environmental Microbiology Reports | 2011
Svetlana E. Belova; Mohamed Baani; Natalia E. Suzina; Paul L. E. Bodelier; Werner Liesack; Svetlana N. Dedysh
Representatives of the genus Methylocystis are traditionally considered to be obligately methanotrophic bacteria, which are incapable of growth on multicarbon substrates. Here, we describe a novel member of this genus, strain H2s, which represents a numerically abundant and ecologically important methanotroph population in northern Sphagnum-dominated wetlands. This isolate demonstrates a clear preference for growth on methane but is able to grow slowly on acetate in the absence of methane. Strain H2s possesses both forms of methane monooxygenase (particulate and soluble MMO) and a well-developed system of intracytoplasmic membranes (ICM). In cells grown for several transfers on acetate, these ICM are maintained, although in a reduced form, and mRNA transcripts of particulate MMO are detectable. These cells resume their growth on methane faster than those kept for the same period of time without any substrate. Growth on acetate leads to a major shift in the phospholipid fatty acid composition. The re-examination of all type strains of the validly described Methylocystis species showed that Methylocystis heyeri H2(T) and Methylocystis echinoides IMET10491(T) are also capable of slow growth on acetate. This capability might represent an important part of the survival strategy of Methylocystis spp. in environments where methane availability is variable or limited.
Tuberculosis | 2011
Margarita O. Shleeva; Yulia K. Kudykina; Galina Vostroknutova; Natalia E. Suzina; A. L. Mulyukin; Arseny S. Kaprelyants
It is believed that latent tuberculosis is associated with the persistence of Mycobacterium tuberculosis (MTB) in a dormant-like state. Dormant cells of MTB with coccoid morphology were produced in some in vivo studies, but similar forms were not produced in the known in vitro models in sufficient amounts to permit their characterization. This work demonstrates the efficient formation of phase-dark ovoid cells in MTB cultures within 150 days after the onset of stationary phase. During this time the medium underwent gradual acidification (pH 8.5 → 4.7) as a result of cellular metabolism. A rapid change in the external pH resulted in cell degradation and death. In common with the dormant forms found in other organisms, the ovoid cells had thickened cell walls, a low metabolic activity and elevated resistance to antibiotics and heating. The ovoid cells had lost the ability to form colonies on solid medium and were thus regarded as operationally «non-culturable». At an early stage in the acidification process (about 40 days post inoculation), the ovoid cells self-resuscitated when placed in fresh liquid medium. However, ovoid cells, stored for a prolonged time, required supernatant from active MTB cells, or externally added recombinant form of resuscitation promoting factor (Rpf) for successful resuscitation. It is suggested that the adaptation of cellular metabolism leading to gradual acidification of the external medium results in the formation of morphologically distinct dormant MTB cells in vitro. The model of MTB dormancy developed here could be a useful tool for the development of new drugs against latent TB.
International Journal of Systematic and Evolutionary Microbiology | 2010
Irina S. Kulichevskaya; Natalia E. Suzina; Werner Liesack; Svetlana N. Dedysh
Bryobacter aggregatus gen. nov., sp. nov. is proposed to accommodate three strains of slowly growing, chemo-organotrophic bacteria isolated from acidic Sphagnum peat bogs. These bacteria were strictly aerobic, Gram-negative, colourless, non-motile coccoids or short rods that multiplied by normal cell division and formed irregularly shaped cell aggregates. Strains MPL3(T), MPL1011 and MOB76 were acidotolerant, mesophilic organisms capable of growth at pH 4.5-7.2 and between 4 and 33 degrees C (optimum growth at pH 5.5-6.5 and 22-28 degrees C). The preferred growth substrates were sugars, some heteropolysaccharides and galacturonic and glucuronic acids, which are released during decomposition of Sphagnum moss. The major fatty acids were iso-C(15 : 0), C(16 : 0) and summed feature 3 (iso-C(15 : 0) 2-OH and/or C(16 : 1)omega7c); the major quinones were MK-9 and MK-10. The DNA G+C content was 55.5-56.5 mol%. Strains MPL3(T), MPL1011 and MOB76 possessed nearly identical 16S rRNA gene sequences and belonged to the phylum Acidobacteria. They represent the first taxonomically characterized members of acidobacterial subdivision 3 and display only 81.7-86.7 % 16S rRNA gene sequence similarity to other members of the Acidobacteria with validly published names. Therefore, strains MPL3(T), MPL1011 and MOB76 are classified as representatives of a novel species in a new genus, for which the name Bryobacter aggregatus gen. nov., sp. nov. is proposed; strain MPL3(T) (=ATCC BAA-1390(T) =DSM 18758(T)) is the type strain of Bryobacter aggregatus.
FEBS Journal | 2008
Natalia V. Vasilyeva; I. M. Tsfasman; Natalia E. Suzina; O. A. Stepnaya; I. S. Kulaev
The Gram‐negative bacterium Lysobacter sp. XL1 secretes various proteins, including bacteriolytic enzymes (L1–L5), into the culture medium. These proteins are able to degrade Gram‐positive bacteria. The mechanism of secretion of extracellular proteins by Lysobacter sp. XL1 has not been studied hitherto. Electron microscopic investigations revealed the phenomenon of the formation of extracellular vesicles by Lysobacter sp. XL1. These vesicles contained components of the Lysobacter sp. XL1 outer membrane, and demonstrated bacteriolytic activity against Gram‐positive and Gram‐negative bacteria: Staphylococcus aureus 209‐P and Erwinia marcescens EC1, respectively. Western blotting analysis with antibodies to homologous bacteriolytic endopeptidases L1 and L5 showed that endopeptidase L5 was secreted into the culture medium by means of vesicles, unlike its homolog, endopeptidase L1. When inside the vesicles, endopeptidase L5 actively lysed the Gram‐negative bacterium Erwinia marcescens; outside the vesicles, it lost this ability. The secretion of bacteriolytic endopeptidase L5 through the outer membrane vesicles is of great biological significance: because of this ability, Lysobacter sp. XL1 can compete in nature with both Gram‐positive and Gram‐negative bacteria.
Journal of Bacteriology | 2005
Svetlana N. Dedysh; Ksenia V. Smirnova; V. N. Khmelenina; Natalia E. Suzina; Werner Liesack; Yuri A. Trotsenko
Representatives of the genus Beijerinckia are known as heterotrophic, dinitrogen-fixing bacteria which utilize a wide range of multicarbon compounds. Here we show that at least one of the currently known species of this genus, i.e., Beijerinckia mobilis, is also capable of methylotrophic metabolism coupled with the ribulose bisphosphate (RuBP) pathway of C1 assimilation. A complete suite of dehydrogenases commonly involved in the sequential oxidation of methanol via formaldehyde and formate to CO2 was detected in cell extracts of B. mobilis grown on CH3OH. Carbon dioxide produced by oxidation of methanol was further assimilated via the RuBP pathway as evidenced by reasonably high activities of phosphoribulokinase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Detection and partial sequence analysis of genes encoding the large subunits of methanol dehydrogenase (mxaF) and form I RubisCO (cbbL) provided genotypic evidence for methylotrophic autotrophy in B. mobilis.