Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Svetlana N. Dedysh is active.

Publication


Featured researches published by Svetlana N. Dedysh.


Applied and Environmental Microbiology | 2011

13,16-Dimethyl Octacosanedioic Acid (iso-Diabolic Acid), a Common Membrane-Spanning Lipid of Acidobacteria Subdivisions 1 and 3

Jaap S. Sinninghe Damsté; W. Irene C. Rijpstra; Ellen C. Hopmans; Johan W. H. Weijers; Bärbel U. Foesel; Jörg Overmann; Svetlana N. Dedysh

ABSTRACT The distribution of membrane lipids of 17 different strains representing 13 species of subdivisions 1 and 3 of the phylum Acidobacteria, a highly diverse phylum of the Bacteria, were examined by hydrolysis and gas chromatography-mass spectrometry (MS) and by high-performance liquid chromatography-MS of intact polar lipids. Upon both acid and base hydrolyses of total cell material, the uncommon membrane-spanning lipid 13,16-dimethyl octacosanedioic acid (iso-diabolic acid) was released in substantial amounts (22 to 43% of the total fatty acids) from all of the acidobacteria studied. This lipid has previously been encountered only in thermophilic Thermoanaerobacter species but bears a structural resemblance to the alkyl chains of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) that occur ubiquitously in peat and soil and are suspected to be produced by acidobacteria. As reported previously, most species also contained iso-C15 and C16:1ω7C as major fatty acids but the presence of iso-diabolic acid was unnoticed in previous studies, most probably because the complex lipid that contained this moiety was not extractable from the cells; it could only be released by hydrolysis. Direct analysis of intact polar lipids in the Bligh-Dyer extract of three acidobacterial strains, indeed, did not reveal any membrane-spanning lipids containing iso-diabolic acid. In 3 of the 17 strains, ether-bound iso-diabolic acid was detected after hydrolysis of the cells, including one branched GDGT containing iso-diabolic acid-derived alkyl chains. Since the GDGT distribution in soils is much more complex, branched GDGTs in soil likely also originate from other (acido)bacteria capable of biosynthesizing these components.


Applied and Environmental Microbiology | 2006

Phylogenetic Analysis and In Situ Identification of Bacteria Community Composition in an Acidic Sphagnum Peat Bog

Svetlana N. Dedysh; T. A. Pankratov; Svetlana E. Belova; Irina S. Kulichevskaya; Werner Liesack

ABSTRACT The Bacteria community composition in an acidic Sphagnum peat bog (pH 3.9 to 4.5) was characterized by a combination of 16S rRNA gene clone library analysis, rRNA-targeted fluorescence in situ hybridization (FISH), and cultivation. Among 84 environmental 16S rRNA gene clones, a set of only 16 cloned sequences was closely related (≥95% similarity) to taxonomically described organisms. Main groups of clones were affiliated with the Acidobacteria (24 clones), Alphaproteobacteria (20), Verrucomicrobia (13), Actinobacteria (8), Deltaproteobacteria (4), Chloroflexi (3), and Planctomycetes (3). The proportion of cells that hybridized with oligonucleotide probes specific for members of the domains Bacteria (EUB338-mix) and Archaea (ARCH915 and ARC344) accounted for only 12 to 22% of the total cell counts. Up to 24% of the EUB338-positive cells could be assigned by FISH to specific bacterial phyla. Alphaproteobacteria and Planctomycetes were the most numerous bacterial groups (up to 1.3 × 107 and 1.1 × 107 cells g−1 peat, respectively). In contrast to conventional plating techniques, a novel biofilm-mediated enrichment approach allowed us to isolate some representatives of predominant Bacteria groups, such as Acidobacteria and Planctomycetes. This novel strategy has great potential to enable the isolation of a significant proportion of the peat bog bacterial diversity.


Journal of Bacteriology | 2005

Methylocella Species Are Facultatively Methanotrophic

Svetlana N. Dedysh; Claudia Knief; Peter F. Dunfield

All aerobic methanotrophic bacteria described to date are unable to grow on substrates containing carbon-carbon bonds. Here we demonstrate that members of the recently discovered genus Methylocella are an exception to this. These bacteria are able to use as their sole energy source the one-carbon compounds methane and methanol, as well as the multicarbon compounds acetate, pyruvate, succinate, malate, and ethanol. To conclusively verify facultative growth, acetate and methane were used as model substrates in growth experiments with the type strain Methylocella silvestris BL2. Quantitative real-time PCR targeting the mmoX gene, which encodes a subunit of soluble methane monooxygenase, showed that copies of this gene increased in parallel with cell counts during growth on either acetate or methane as the sole substrate. This verified that cells possessing the genetic basis of methane oxidation grew on acetate as well as methane. Cloning of 16S rRNA genes and fluorescence in situ hybridization with strain-specific and genus-specific oligonucleotide probes detected no contaminants in cultures. The growth rate and carbon conversion efficiency were higher on acetate than on methane, and when both substrates were provided in excess, acetate was preferably used and methane oxidation was shut down. Our data demonstrate that not all methanotrophic bacteria are limited to growing on one-carbon compounds. This could have major implications for understanding the factors controlling methane fluxes in the environment.


International Journal of Systematic and Evolutionary Microbiology | 2002

Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog

Svetlana N. Dedysh; V. N. Khmelenina; Natalia E. Suzina; Yuri A. Trotsenko; Jeremy D. Semrau; Werner Liesack; James M. Tiedje

A novel genus and species, Methylocapsa acidiphila gen. nov., sp. nov., are proposed for a methane-oxidizing bacterium isolated from an acidic Sphagnum peat bog. This bacterium, designated strain B2T, represents aerobic, gram-negative, colourless, non-motile, curved coccoids that form conglomerates covered by an extracellular polysaccharide matrix. The cells use methane and methanol as sole sources of carbon and energy and utilize the serine pathway for carbon assimilation. Strain B2T is a moderately acidophilic organism with growth between pH 4.2 and 7.2 and at temperatures from 10 to 30 degrees C. The cells possess a well-developed system of intracytoplasmic membranes (ICM) packed in parallel on only one side of the cell membrane. This type of ICM structure represents a novel arrangement, which was termed type III. The resting cells are Azotobacter-type cysts. Strain B2T is capable of atmospheric nitrogen fixation; it possesses particulate methane monooxygenase and does not express soluble methane monooxygenase. The major phospholipid fatty acid is 18:1omega7c and the major phospholipids are phosphatidylglycerols. The G+C content of the DNA is 63.1 mol%. This bacterium belongs to the alpha-subclass of the Proteobacteria and is most closely related to the acidophilic methanotroph Methylocella palustris KT (97.3% 16S rDNA sequence similarity). However, the DNA-DNA hybridization value between strain B2T and Methylocella palustris K(T) is only 7%. Thus, strain B2T is proposed to comprise a novel genus and species, Methylocapsa acidiphila gen. nov., sp. nov. Strain B2T (= DSM 13967T = NCIMB 13765T) is the type strain.


International Journal of Systematic and Evolutionary Microbiology | 2011

Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase.

Alexey Vorobev; Mohamed Baani; N. V. Doronina; Allyson L. Brady; Werner Liesack; Peter F. Dunfield; Svetlana N. Dedysh

Two strains of aerobic methanotrophic bacteria, AR4(T) and SOP9, were isolated from acidic (pH 3.8-4.0) Sphagnum peat bogs in Russia. Another phenotypically similar isolate, strain LAY, was obtained from an acidic (pH 4.0) forest soil in Germany. Cells of these strains were Gram-negative, non-pigmented, non-motile, thin rods that multiplied by irregular cell division and formed rosettes or amorphous cell conglomerates. Similar to Methylocella species, strains AR4(T), SOP9 and LAY possessed only a soluble form of methane monooxygenase (sMMO) and lacked intracytoplasmic membranes. Growth occurred only on methane and methanol; the latter was the preferred growth substrate. mRNA transcripts of sMMO were detectable in cells when either methane or both methane and methanol were available. Carbon was assimilated via the serine and ribulose-bisphosphate (RuBP) pathways; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strains AR4(T), SOP9 and LAY were moderately acidophilic, mesophilic organisms capable of growth between pH 3.5 and 7.2 (optimum pH 4.8-5.2) and at 4-33 °C (optimum 20-23 °C). The major cellular fatty acid was 18 : 1ω7c and the quinone was Q-10. The DNA G+C content was 55.6-57.5 mol%. The isolates belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and were most closely related to the sMMO-possessing methanotrophs of the genus Methylocella (96.4-97.0 % 16S rRNA gene sequence similarity), particulate MMO (pMMO)-possessing methanotrophs of the genus Methylocapsa (96.1-97.0 %), facultative methylotrophs of the genus Methylovirgula (96.1-96.3 %) and non-methanotrophic organotrophs of the genus Beijerinckia (96.5-97.0 %). Phenotypically, strains AR4(T), SOP9 and LAY were most similar to Methylocella species, but differed from members of this genus by cell morphology, greater tolerance of low pH, detectable activities of RuBP pathway enzymes and inability to grow on multicarbon compounds. Therefore, we propose a novel genus and species, Methyloferula stellata gen. nov., sp. nov., to accommodate strains AR4(T), SOP9 and LAY. Strain AR4(T) ( = DSM 22108(T)  = LMG 25277(T)  = VKM B-2543(T)) is the type strain of Methyloferula stellata.


Applied and Environmental Microbiology | 2001

Detection and Enumeration of Methanotrophs in Acidic Sphagnum Peat by 16S rRNA Fluorescence In Situ Hybridization, Including the Use of Newly Developed Oligonucleotide Probes for Methylocella palustris

Svetlana N. Dedysh; Manigee Derakshani; Werner Liesack

ABSTRACT Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or theMethylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in aSphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 106 cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 104 type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 106 type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus andMethylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion ofMethylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (±0.2) × 106 cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population ofMethylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.


Molecular Microbiology | 2005

Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2

Andreas R. Theisen; M. Hanif Ali; Stefan Radajewski; Marc G. Dumont; Peter F. Dunfield; Ian R. McDonald; Svetlana N. Dedysh; Carlos B. Miguez; J. Colin Murrell

The molecular regulation of methane oxidation in the first fully authenticated facultative methanotroph Methylocella silvestris BL2 was assessed during growth on methane and acetate. Problems of poor growth of Methylocella spp. in small‐scale batch culture were overcome by growth in fermentor culture. The genes encoding soluble methane monooxygenase were cloned and sequenced, which revealed that the structural genes for soluble methane monooxygenase, mmoXYBZDC, were adjacent to two genes, mmoR and mmoG, encoding a σ54 transcriptional activator and a putative GroEL‐like chaperone, located downstream (3′) of mmoC. Transcriptional analysis revealed that the genes were all cotranscribed from a σ54‐dependent promoter located upstream (5′) of mmo X. The transcriptional start site was mapped. Transcriptional analysis of soluble methane monooxygenase genes and expression studies on fermentor grown cultures showed that acetate repressed transcription of sMMO in M. silvestris BL2. The possibility of the presence of a particulate, membrane‐bound methane monooxygenase enzyme in M. silvestris BL2 and the copper‐mediated regulation of soluble methane monooxygenase was investigated. Both were shown to be absent. A promoter probe vector was constructed and used to assay transcription of the promoter of the soluble methane monoxygenase genes of M. silvestris BL2 grown under various conditions and with different substrates. These data represent the first insights into the molecular physiology of a facultative methanotroph.


Frontiers in Microbiology | 2011

Cultivating Uncultured Bacteria from Northern Wetlands: Knowledge Gained and Remaining Gaps

Svetlana N. Dedysh

Northern wetlands play a key role in the global carbon budget, particularly in the budgets of the greenhouse gas methane. These ecosystems also determine the hydrology of northern rivers and represent one of the largest reservoirs of fresh water in the Northern Hemisphere. Sphagnum-dominated peat bogs and fens are the most extensive types of northern wetlands. In comparison to many other terrestrial ecosystems, the bacterial diversity in Sphagnum-dominated wetlands remains largely unexplored. As demonstrated by cultivation-independent studies, a large proportion of the indigenous microbial communities in these acidic, cold, nutrient-poor, and water-saturated environments is composed of as-yet-uncultivated bacteria with unknown physiologies. Most of them are slow-growing, oligotrophic microorganisms that are difficult to isolate and to manipulate in the laboratory. Yet, significant breakthroughs in cultivation of these elusive organisms have been made during the last decade. This article describes the major prerequisites for successful cultivation of peat-inhabiting microbes, gives an overview of the currently captured bacterial diversity from northern wetlands and discusses the unique characteristics of the newly discovered organisms.


Environmental Microbiology Reports | 2011

Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp.

Svetlana E. Belova; Mohamed Baani; Natalia E. Suzina; Paul L. E. Bodelier; Werner Liesack; Svetlana N. Dedysh

Representatives of the genus Methylocystis are traditionally considered to be obligately methanotrophic bacteria, which are incapable of growth on multicarbon substrates. Here, we describe a novel member of this genus, strain H2s, which represents a numerically abundant and ecologically important methanotroph population in northern Sphagnum-dominated wetlands. This isolate demonstrates a clear preference for growth on methane but is able to grow slowly on acetate in the absence of methane. Strain H2s possesses both forms of methane monooxygenase (particulate and soluble MMO) and a well-developed system of intracytoplasmic membranes (ICM). In cells grown for several transfers on acetate, these ICM are maintained, although in a reduced form, and mRNA transcripts of particulate MMO are detectable. These cells resume their growth on methane faster than those kept for the same period of time without any substrate. Growth on acetate leads to a major shift in the phospholipid fatty acid composition. The re-examination of all type strains of the validly described Methylocystis species showed that Methylocystis heyeri H2(T) and Methylocystis echinoides IMET10491(T) are also capable of slow growth on acetate. This capability might represent an important part of the survival strategy of Methylocystis spp. in environments where methane availability is variable or limited.


PLOS ONE | 2013

Pyrosequencing-Based Assessment of the Bacteria Diversity in Surface and Subsurface Peat Layers of a Northern Wetland, with Focus on Poorly Studied Phyla and Candidate Divisions

Yulia M. Serkebaeva; Yongkyu Kim; Werner Liesack; Svetlana N. Dedysh

Northern peatlands play a key role in the global carbon and water budget, but the bacterial diversity in these ecosystems remains poorly described. Here, we compared the bacterial community composition in the surface (0–5 cm depth) and subsurface (45–50 cm) peat layers of an acidic (pH 4.0) Sphagnum-dominated wetland, using pyrosequencing of 16S rRNA genes. The denoised sequences (37,229 reads, average length ∼430 bp) were affiliated with 27 bacterial phyla and corresponded to 1,269 operational taxonomic units (OTUs) determined at 97% sequence identity. Abundant OTUs were affiliated with the Acidobacteria (35.5±2.4% and 39.2±1.2% of all classified sequences in surface and subsurface peat, respectively), Alphaproteobacteria (15.9±1.7% and 25.8±1.4%), Actinobacteria (9.5±2.0% and 10.7±0.5%), Verrucomicrobia (8.5±1.4% and 0.6±0.2%), Planctomycetes (5.8±0.4% and 9.7±0.6%), Deltaproteobacteria (7.1±0.4% and 4.4%±0.3%), and Gammaproteobacteria (6.6±0.4% and 2.1±0.1%). The taxonomic patterns of the abundant OTUs were uniform across all the subsamples taken from each peat layer. In contrast, the taxonomic patterns of rare OTUs were different from those of the abundant OTUs and varied greatly among subsamples, in both surface and subsurface peat. In addition to the bacterial taxa listed above, rare OTUs represented the following groups: Armatimonadetes, Bacteroidetes, Chlamydia, Chloroflexi, Cyanobacteria, Elusimicrobia, Fibrobacteres, Firmicutes, Gemmatimonadetes, Spirochaetes, AD3, WS1, WS4, WS5, WYO, OD1, OP3, BRC1, TM6, TM7, WPS-2, and FCPU426. OTU richness was notably higher in the surface layer (882 OTUs) than in the anoxic subsurface peat (483 OTUs), with only 96 OTUs common to both data sets. Most members of poorly studied phyla, such as the Acidobacteria, Verrucomicrobia, Planctomycetes and the candidate division TM6, showed a clear preference for growth in either oxic or anoxic conditions. Apparently, the bacterial communities in surface and subsurface layers of northern peatlands are highly diverse and taxonomically distinct, reflecting the different abiotic conditions in microhabitats within the peat profile.

Collaboration


Dive into the Svetlana N. Dedysh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Svetlana E. Belova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. A. Pankratov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalia E. Suzina

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge