Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Freitas is active.

Publication


Featured researches published by Natalia Freitas.


Current Genomics | 2009

Mechanisms and Signals for the Nuclear Import of Proteins

Natalia Freitas; Celso Cunha

In eukaryotes, the nuclear membrane provides a physical barrier to the passive diffusion of macromolecules from and into the cytoplasm. Nucleocytoplasmic traffic occurs through highly specialized structures known as nuclear pores, and involves the participation of a special class of transport proteins. Active transport across the nuclear pores is an energy-dependent process that relies on the activity of Ran-GTPases both in the nuclear and cytoplasmic compartments. Nuclear import of proteins is an essential step in regulating gene expression and the replication cycle of several viruses. In this review, the key mechanisms, pathways, and models underlying the transport of proteins across nuclear pores are analysed.


Hepatology | 2012

Hepatitis delta virus infects the cells of hepadnavirus‐induced hepatocellular carcinoma in woodchucks

Natalia Freitas; Jessica Salisse; Celso Cunha; Ilia Toshkov; Stephan Menne; Severin O. Gudima

Hepatitis delta virus (HDV) is a natural subviral agent of human hepatitis B virus (HBV). HDV enhances liver damage during concomitant infection with HBV. The molecular pathogenesis of HDV infection remains poorly understood. To advance our understanding of the relationship between HDV infection and liver cancer, it was determined whether HDV could infect in vivo the cells of hepadnavirus‐induced hepatocellular carcinoma (HCC). Woodchucks (Marmota monax) that were chronically infected with HBV‐related woodchuck hepatitis virus (WHV) and already developed HCCs were used as an experimental model. The locations of HCCs within the livers were determined using ultrasound imaging followed by open surgery. One week after surgery the WHV carrier woodchucks were superinfected with WHV‐enveloped HDV (wHDV). Six weeks later the animals were sacrificed and HDV replication in normal liver tissues and in center masses of HCCs was evidenced by Northern analysis, real‐time polymerase chain reaction assay, and immunohistochemistry. Based on accumulation levels of HDV RNAs and numbers of infected cells, the efficiency of wHDV infection appears to be comparable in most HCCs and normal liver tissues. Conclusion: Cells of WHV‐induced HCCs are susceptible to HDV infection in vivo, and therefore express functional putative WHV receptors and support the steps of the attachment/entry governed by the hepadnavirus envelope proteins. Because others previously hypothesized that hepadnavirus‐induced HCCs are resistant to reinfection with a hepadnavirus in vivo, our data suggest that if such a resistance exists it likely occurs via a block at the post‐entry step. The demonstrated ability of HDV to infect already formed HCCs may facilitate development of novel strategies further dissecting the mechanism of liver pathogenesis associated with HDV infection. (HEPATOLOGY 2012;56:76–85)


Journal of Proteomics | 2009

Proteome analysis of a human liver carcinoma cell line stably expressing hepatitis delta virus ribonucleoproteins

Sergio Regufe da Mota; Marta Mendes; Natalia Freitas; Deborah Penque; Ana V. Coelho; Celso Cunha

Hepatitis delta virus (HDV) infects human hepatocytes already infected with the hepatitis B virus increasing about ten fold the risk of cirrhosis and fulminant hepatitis. The lack of an appropriate cell culture system capable of supporting virus replication has so far impaired the detailed investigation of the HDV biology including the identification of host factors involved in pathogenesis. Here, we made use of a HDV cDNA stably transfected cell line, Huh7-D12, in a proteomic approach to identify the changes in the protein expression profiles in human liver cells that arise as a consequence of HDV replication. Total protein extracts from Huh7-D12 cells and of the corresponding non transfected human liver carcinoma cell line, Huh7, were separated by 2-DE. Differentially expressed spots were identified by MALDI-TOF followed by database searching. We identified 23 differentially expressed proteins of which 15 were down regulated and 8 up regulated in Huh7-D12 cells. These proteins were found to be involved in different cellular pathways. The down regulation of the histone H1-binding protein and of triosephosphate isomerase was confirmed by Real time PCR, and the up regulation of the La protein and lamin A/C was validated by western blot.


Journal of Virology | 2014

Envelope proteins derived from naturally integrated hepatitis B virus DNA support assembly and release of infectious hepatitis delta virus particles.

Natalia Freitas; Celso Cunha; Stephan Menne; Severin O. Gudima

ABSTRACT A natural subviral agent of human hepatitis B virus (HBV), hepatitis delta virus (HDV), requires only the envelope proteins from HBV in order to maintain persistent infection. HBV surface antigens (HBsAgs) can be produced either by HBV replication or from integrated HBV DNA regardless of replication. The functional properties of the integrant-generated HBsAgs were examined using two human hepatocellular carcinoma-derived cell lines, Hep3B and PLC/PRF/5, that contain HBV integrants but do not produce HBV virions and have no signs of HBV replication. Both cell lines were able to support HDV replication and assembly/egress of HDV virions. Neither of the cell lines was able to produce substantial amounts of the pre-S1-containing HDV particles. HDV virions assembled in PLC/PRF/5 cells were able to infect primary human hepatocytes, while Hep3B-derived HDV appeared to be noninfectious. These results correlate with the findings that the entire open reading frame (ORF) for the large (L) envelope protein that is essential for infectivity is present on HBV RNAs from PLC/PRF/5 cells, while an L protein ORF that was truncated and fused to inverted precore sequences was found using RNAs from Hep3B cells. This study demonstrates for the first time that at least some of the HBV DNA sequence naturally integrated during infection can produce functional small and large envelope proteins capable of the formation of infectious HDV virions. Our data indicate that in vivo chronic HDV infection can persist in the absence of HBV replication (or when HBV replication is profoundly suppressed) if functional envelope proteins are supplied from HBV integrants. IMPORTANCE The study addresses the unique mechanism of HDV persistence in the absence of ongoing HBV replication, advances our understanding of HDV-HBV interactions, and supports the implementation of treatments directly targeting HDV for HDV/HBV-infected individuals.


Journal of Virology | 2014

Support of the Infectivity of Hepatitis Delta Virus Particles by the Envelope Proteins of Different Genotypes of Hepatitis B Virus

Natalia Freitas; Kenji Abe; Celso Cunha; Stephan Menne; Severin O. Gudima

ABSTRACT This study examined how the envelope proteins of 25 variants of hepatitis B virus (HBV) genotypes A to I support hepatitis delta virus (HDV) infectivity. The assembled virions bore the same HDV ribonucleoprotein and differed only by the HBV variant-specific envelope proteins coating the particles. The total HDV yields varied within a 122-fold range. A residue Y (position 374) in the HDV binding site was identified as critical for HDV assembly. Virions that bound antibodies, which recognize the region that includes the HBV matrix domain and predominantly but not exclusively immunoprecipitate the PreS1-containing virions, were termed PreS1*-HDVs. Using in vitro infection of primary human hepatocytes (PHH), we measured the specific infectivity (SI), which is the number of HDV genomes/cell produced by infection and normalized by the PreS1*-MOI, which is the multiplicity of infection that reflects the number of PreS1*-HDVs per cell in the inoculum used. The SI values varied within a 160-fold range and indicated a probable HBV genotype-specific trend of D > B > E > A in supporting HDV infectivity. Three variants, of genotypes B, C, and D, supported the highest SI values. We also determined the normalized index (NI) of infected PHH, which is the percentage of HDV-infected hepatocytes normalized by the PreS1*-MOI. Comparison of the SI and NI values revealed that, while a particular HBV variant may facilitate the infection of a relatively significant fraction of PHH, it may not always result in a considerable number of genomes that initiated replication after entry. The potential implications of these findings are discussed in the context of the mechanism of attachment/entry of HBV and HDV. IMPORTANCE The study advances the understanding of the mechanisms of (i) attachment and entry of HDV and HBV and (ii) transmission of HDV infection/disease.


Journal of Virology | 2015

Superinfection with Woodchuck Hepatitis Virus Strain WHVNY of Livers Chronically Infected with Strain WHV7

Louise Rodrigues; Natalia Freitas; Bhaskar Kallakury; Stephan Menne; Severin O. Gudima

ABSTRACT The determinants of the maintenance of chronic hepadnaviral infection are yet to be fully understood. A long-standing unresolved argument in the hepatitis B virus (HBV) research field suggests that during chronic hepadnaviral infection, cell-to-cell spread of hepadnavirus is at least very inefficient (if it occurs at all), virus superinfection is an unlikely event, and chronic hepadnavirus infection can be maintained exclusively via division of infected hepatocytes in the absence of virus spread. Superinfection exclusion was previously shown for duck HBV, but it was not demonstrated for HBV or HBV-related woodchuck hepatitis virus (WHV). Three woodchucks, which were chronically infected with the strain WHV7 and already developed WHV-induced hepatocellular carcinomas (HCCs), were superinfected with another WHV strain, WHVNY. Six weeks after the superinfection, the woodchucks were sacrificed and tissues of the livers and HCCs were examined. The WHVNY superinfection was demonstrated by using WHV strain-specific PCR assays and (i) finding WHVNY relaxed circular DNA in the serum samples collected from all superinfected animals during weeks one through six after the superinfection, (ii) detecting replication-derived WHVNY RNA in the tissue samples of the livers and HCCs collected from three superinfected woodchucks, and (iii) finding WHVNY DNA replication intermediates in tissues harvested after the superinfection. The results are consistent with the occurrence of continuous but inefficient hepadnavirus cell-to-cell spread and superinfection during chronic infection and suggest that the replication space occupied by the superinfecting hepadnavirus in chronically infected livers is limited. The findings are discussed in the context of the mechanism of chronic hepadnavirus infection. IMPORTANCE This study aimed to better understand the determinants of the maintenance of chronic hepadnavirus infection. The generated data suggest that in the livers chronically infected with woodchuck hepatitis virus, (i) hepadnavirus superinfection and cell-to-cell spread likely continue to occur and (ii) the virus spread is apparently inefficient, which is consistent with the interpretation that a limited number of cells in the livers facilitates the spread of hepadnavirus. The limitations of the cell-to-cell virus spread most likely are mediated at the level of the cells and do not reflect the properties of the virus. Our results further advance the understanding of the mechanism of chronic hepadnavirus infection. The significance of the continuous but limited hepadnavirus spread and superinfection for the maintenance of the chronic state of infection should be further evaluated in follow-up studies in order to determine whether blocking the virus spread would facilitate the suppression of chronic hepadnavirus infection.


Virus Research | 2015

Capacity of a natural strain of woodchuck hepatitis virus, WHVNY, to induce acute infection in naive adult woodchucks

Natalia Freitas; Tetyana Lukash; Megan Dudek; Sam Litwin; Stephan Menne; Severin O. Gudima

Woodchuck hepatitis virus (WHV) is often used as surrogate to study mechanism of HBV infection. Currently, most infections are conducted using strains WHV7 or WHV8 that have very high sequence identity. This study focused on natural strain WHVNY that is more genetically distant from WHV7. Three naive adult woodchucks inoculated with WHVNY developed productive acute infection with long lasting viremia. However, only one of two woodchucks infected with WHV7 at the same multiplicity demonstrated productive liver infection. Quantification of intracellular WHV RNA and DNA replication intermediates; percentages of core antigen-positive hepatocytes; and serum relaxed circular DNA showed that strains WHVNY and WHV7 displayed comparable replication levels and capacities to induce acute infection in naive adult woodchucks. Strain WHVNY was therefore validated as valuable reagent to analyze the mechanism of hepadnavirus infection, especially in co- and super-infection settings, which required discrimination between two related virus genomes replicating in the same liver.


Journal of Virology | 2015

Infection Patterns Induced in Naive Adult Woodchucks by Virions of Woodchuck Hepatitis Virus Collected during either the Acute or Chronic Phase of Infection

Natalia Freitas; Tetyana Lukash; Louise Rodrigues; Sam Litwin; Bhaskar Kallakury; Stephan Menne; Severin O. Gudima

ABSTRACT The infectivity of hepadnavirus virions produced during either acute or chronic stages of infection was compared by testing the ability of the virions of woodchuck hepatitis virus (WHV) to induce productive acute infection in naive adult woodchucks. Serum WHV collected during acute infection was compared to virions harvested from WHV-infected woodchucks during either (i) early chronic infection, when WHV-induced hepatocellular carcinoma (HCC) was not yet developed, or (ii) late chronic infection, when established HCC was terminal. All tested types of WHV inoculum were related, because they were collected from woodchucks that originally were infected with standardized WHV7 inoculum. Despite the individual differences between animals, the kinetics of accumulation of serum relaxed circular DNA of WHV demonstrated that the virions produced during early or late chronic infection are fully capable of inducing productive acute infection with long-lasting high viremia. These findings were further supported by the analysis of such intrahepatic markers of WHV infection as replicative intermediate DNA, covalently closed circular DNA, pregenomic RNA, and the percentage of WHV core antigen-positive hepatocytes measured at several time points over the course of 17.5 weeks after the inoculation. In addition, the observed relationship between the production of antibodies against WHV surface antigens and parameters of WHV infection appears to be complex. Taken together, the generated data suggest that in vivo hepadnavirus virions produced during different phases of chronic infection did not demonstrate any considerable deficiencies in infectivity compared to that of virions generated during the acute phase of infection. IMPORTANCE The generated data suggest that infectivity of virions produced during the early or late stages of chronic hepadnavirus infection is not compromised. Our novel results provided several lines of further evidence supporting the idea that during the state of chronic infection in vivo, the limitations of hepadnavirus cell-to-cell spread/superinfection (observed recently in the woodchuck model) are not due to the diminished infectivity of the virions circulating in the blood and likely are (i) related to the properties of hepatocytes (i.e., their capacity to support hepadnavirus infection/replication) and (ii) influenced by the immune system. The obtained results further extend the understanding of the mechanisms regulating the persistence of hepadnavirus infection. Follow-up studies that will further investigate hepadnavirus cell-to-cell spread as a potential regulator of the chronic state of the infection are warranted.


World journal of virology | 2013

Searching for nuclear export elements in hepatitis D virus RNA.

Natalia Freitas; Celso Cunha

AIM To search for the presence of cis elements in hepatitis D virus (HDV) genomic and antigenomic RNA capable of promoting nuclear export. METHODS We made use of a well characterized chloramphenicol acetyl-transferase reporter system based on plasmid pDM138. Twenty cDNA fragments corresponding to different HDV genomic and antigenomic RNA sequences were inserted in plasmid pDM138, and used in transfection experiments in Huh7 cells. The relative amounts of HDV RNA in nuclear and cytoplasmic fractions were then determined by real-time polymerase chain reaction and Northern blotting. The secondary structure of the RNA sequences that displayed nuclear export ability was further predicted using a web interface. Finally, the sensitivity to leptomycin B was assessed in order to investigate possible cellular pathways involved in HDV RNA nuclear export. RESULTS Analysis of genomic RNA sequences did not allow identifying an unequivocal nuclear export element. However, two regions were found to promote the export of reporter mRNAs with efficiency higher than the negative controls albeit lower than the positive control. These regions correspond to nucleotides 266-489 and 584-920, respectively. In addition, when analyzing antigenomic RNA sequences a nuclear export element was found in positions 214-417. Export mediated by the nuclear export element of HDV antigenomic RNA is sensitive to leptomycin B suggesting a possible role of CRM1 in this transport pathway. CONCLUSION A cis-acting nuclear export element is present in nucleotides 214-417 of HDV antigenomic RNA.


Virology | 2008

Characterization of the nuclear localization signal of the hepatitis delta virus antigen

Carolina Alves; Natalia Freitas; Celso Cunha

Collaboration


Dive into the Natalia Freitas's collaboration.

Top Co-Authors

Avatar

Celso Cunha

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Menne

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam Litwin

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Louise Rodrigues

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Betty L. Slagle

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge