Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Severin O. Gudima is active.

Publication


Featured researches published by Severin O. Gudima.


Journal of Virology | 2002

Parameters of Human Hepatitis Delta Virus Genome Replication: the Quantity, Quality, and Intracellular Distribution of Viral Proteins and RNA

Severin O. Gudima; Jinhong Chang; Gloria Moraleda; Anna Azvolinsky; John M. Taylor

ABSTRACT Assembly of hepatitis delta virus (HDV) in infected human hepatocytes involves association of the 1,679- nucleotide single-stranded genomic RNA (δRNA) with multiple copies of both small and large forms of the delta protein (δAg) to form a ribonucleoprotein particle which in turn interacts with envelope proteins of the natural helper virus, hepatitis B virus. Subsequently, for initiation of a new round of replication, the amount of small δAg within the assembled HDV particle is both necessary and sufficient. Quantitative assays were used in order to better understand just how much δAg is needed. The molar ratio of δAg species to genomic δRNA in assembled HDV particles was approximately 200. Next, this ratio was determined for cells under several different experimental situations in which HDV genome replication was occurring. These included replication in woodchuck liver and also in mouse liver and skeletal muscle, as well as replication in stably and transiently transfected cultured human hepatoblastoma cells. Surprisingly, in almost all these situations the molar ratios were comparable to that observed for HDV particles. This was true for different times after the initiation of replication and was independent of whether or not virus assembly was occurring. Cell fractionation combined with quantitative assays was used to test whether the majority of δAg and δRNA were colocalized during HDV replication in transfected cells. The cytoplasmic fraction contained the majority of δAg and genomic δRNA. Finally, the quality of δAg and δRNA, especially at relatively late times after the initiation of replication, was examined by using reverse transcription-PCR, cloning, and sequencing through the entire δAg open reading frame. When virus assembly and spread were not possible, 20% or less of the predicted δAg would have been able to support HDV replication. In summary, an examination of the quantity, quality and intracellular distribution of δAg and δRNA in several different experimental systems has provided a better understanding of the parameters associated with the initiation, maintenance, and ultimate decline of HDV genome replication.


Journal of Virology | 2005

Development of a Novel System To Study Hepatitis Delta Virus Genome Replication

Jinhong Chang; Severin O. Gudima; Chi Tarn; Xingcao Nie; John M. Taylor

ABSTRACT Hepatitis delta virus (HDV) genome replication requires the virus-encoded small delta protein (δAg). During replication, nucleotide sequence changes accumulate on the HDV RNA, leading to the translation of δAg species that are nonfunctional or even inhibitory. A replication system was devised where all δAg was conditionally provided from a separate and unchanging source. A line of human embryonic kidney cells was stably transfected with a single copy of cDNA encoding small δAg, with expression under tetracycline (TET) control. Next, HDV genome replication was initiated in these cells by transfection with a mutated RNA unable to express δAg. Thus, replication of this RNA was under control of the TET-inducible δAg. In the absence of TET, there was sufficient δAg to allow a low level of HDV replication that could be maintained for at least 1 year. When TET was added, both δAg and genomic RNA increased dramatically within 2 days. With clones of such cells, designated 293-HDV, the burst of HDV RNA replication interfered with cell cycling. Within 2 days, there was a fivefold enhancement of G1/G0 cells relative to both S and G2/M cells, and by 6 days, there was extensive cell detachment and death. These findings and those of other studies that are under way demonstrate the potential applications of this experimental system.


Journal of Virology | 2007

Assembly of Hepatitis Delta Virus: Particle Characterization, Including the Ability To Infect Primary Human Hepatocytes

Severin O. Gudima; Yiping He; Anja Meier; Jinhong Chang; Rongji Chen; Michal Jarnik; Emmanuelle Nicolas; Volker Bruss; John M. Taylor

ABSTRACT Efficient assembly of hepatitis delta virus (HDV) was achieved by cotransfection of Huh7 cells with two plasmids: one to provide expression of the large, middle, and small envelope proteins of hepatitis B virus (HBV), the natural helper of HDV, and another to initiate replication of the HDV RNA genome. HDV released into the media was assayed for HDV RNA and HBV envelope proteins and characterized by rate-zonal sedimentation, immunoaffinity purification, electron microscopy, and the ability to infect primary human hepatocytes. Among the novel findings were that (i) immunostaining for delta antigen 6 days after infection with 300 genome equivalents (GE) per cell showed only 1% of cells as infected, but this was increased to 16% when 5% polyethylene glycol was present during infection; (ii) uninfected cells did not differ from infected cells in terms of albumin accumulation or the presence of E-cadherin at cell junctions; and (iii) sensitive quantitative real-time PCR assays detected HDV replication even when the multiplicity of infection was 0.2 GE/cell. In the future, this HDV assembly and infection system can be further developed to better understand the mechanisms shared by HBV and HDV for attachment and entry into host cells.


Journal of Virology | 2007

Two Potentially Important Elements of the Hepatitis B Virus Large Envelope Protein Are Dispensable for the Infectivity of Hepatitis Delta Virus

Severin O. Gudima; Anja Meier; Roland L. Dunbrack; John M. Taylor; Volker Bruss

ABSTRACT Previous studies have attempted to clarify the roles of the pre-S1 and pre-S2 domains of the large envelope protein of hepatitis B virus (HBV) in attachment and entry into susceptible cells. Difficulties arise in that these domains contain regions involved in the nucleocapsid assembly of HBV and overlapping with the coding regions of the viral polymerase and RNA sequences required for reverse transcription. Such difficulties can be circumvented with hepatitis delta virus (HDV), which needs the HBV large envelope protein only for infectivity. Thus, mutated HBV envelope proteins were examined for their effects on HDV infectivity. Changing the C-terminal region of pre-S1 critical for HBV assembly allowed the envelopment of HDV and had no effect on infectivity in primary human hepatocytes. Similarly, a deletion of the 12 amino acids of a putative translocation motif (TLM) in pre-S2 had no effect. Thus, these two regions are not necessary for HDV infectivity and, by inference, are not needed for HBV attachment and entry into susceptible cells.


Journal of Virology | 2008

Primary Human Hepatocytes Are Susceptible to Infection by Hepatitis Delta Virus Assembled with Envelope Proteins of Woodchuck Hepatitis Virus

Severin O. Gudima; Yiping He; Ning Chai; Volker Bruss; Stephan Urban; William S. Mason; John M. Taylor

ABSTRACT Hepatitis B virus (HBV) and hepatitis delta virus (HDV) share the HBV envelope proteins. When woodchucks chronically infected with woodchuck hepatitis virus (WHV) are superinfected with HDV, they produce HDV with a WHV envelope, wHDV. Several lines of evidence are provided that wHDV infects not only cultured primary woodchuck hepatocytes (PWH) but also primary human hepatocytes (PHH). Surprisingly, HBV-enveloped HDV (hHDV) and wHDV infected PHH with comparable efficiencies; however, hHDV did not infect PWH. The basis for these host range specificities was investigated using as inhibitors peptides bearing species-specific pre-S (where S is the small envelope protein) sequences. It was found that pre-S1 contributed to the ability of wHDV to infect both PHH and PWH. In addition, the inability of hHDV to infect PWH was not overcome using a chimeric form of hHDV containing WHV S protein, again supporting the essential role of pre-S1 in infection of target cells. One interpretation of these data is that host range specificity of HDV is determined entirely by pre-S1 and that the WHV and HBV pre-S1 proteins recognize different receptors on PHH.


Journal of Virology | 2007

Assembly of Hepatitis B Virus Envelope Proteins onto a Lentivirus Pseudotype That Infects Primary Human Hepatocytes

Ning Chai; Ho Eun Chang; Emmanuelle Nicolas; Severin O. Gudima; Jinhong Chang; John M. Taylor

ABSTRACT This study demonstrates that the envelope proteins of hepatitis B virus (HBV) could be incorporated into the lipid membrane of lentivirus pseudotype particles. The assembly procedure was initiated by the transfection of 293T cells with three plasmids: (i) a human immunodeficiency virus (HIV) packaging construct, (ii) a transfer plasmid expressing a reporter gene, and (iii) a plasmid expressing large (L), middle (M), and small (S) HBV envelope proteins. After 2 days, hepatitis B surface antigen and the antigenic forms of L, M, and S were detected at the cell surface by flow cytometry. Also, virus particles that were able to infect cultured primary human hepatocytes (PHH) were released. Under optimal conditions, 50% of PHH could be infected. In addition, the susceptibility of PHH and the resistance of other cell types to the pseudotype particles were similar to those observed for HBV and hepatitis delta virus (HDV), which shares the same L, M, and S. Furthermore, the infection of PHH by the pseudotype was sensitive to known inhibitors of HBV and HDV entry. These findings of specific and efficient infection of hepatocytes could be applicable to liver-specific gene therapy and may help clarify the attachment and entry mechanism used by HBV and HDV.


Journal of Virology | 2005

Evolution of hepatitis delta virus RNA genome following long-term replication in cell culture.

Jinhong Chang; Severin O. Gudima; John M. Taylor

ABSTRACT Previous studies have defined a novel cell culture system in which a modified RNA genome of hepatitis delta virus (HDV) is able to maintain a low level of continuous replication for at least 1 year, using a separate and limited DNA-directed source of mRNA for the essential small delta protein. This mode of replication is analogous to that used by plant viroids. An examination was made of the nucleotide changes that accumulated on the HDV RNA during 1 year of replication. The length of the RNA genome was maintained, except for some single-nucleotide deletions and insertions. There was an abundance of single-nucleotide substitutions, with a 22-fold excess of these being base transitions rather than transversions. Of the detected transitions, at least 70% were consistent with being the consequences of posttranscriptional RNA editing by an adenosine deaminase acting on RNA. The remainder of the changes, including the single-nucleotide insertions and deletions, are likely to be the consequence of misincorporation during transcription. In addition, an intermolecular competition assay was used to show that the majority of the genomes present after 1 year of replication were essentially as competent in replication as the original single HDV RNA sequence that was used to initiate the genome replication. A model is provided to explain how, in this experimental system, the observed single-nucleotide changes were essentially neutral in terms of their effect on the ability of the HDV genome to carry out continued rounds of replication.


Hepatology | 2012

Hepatitis delta virus infects the cells of hepadnavirus‐induced hepatocellular carcinoma in woodchucks

Natalia Freitas; Jessica Salisse; Celso Cunha; Ilia Toshkov; Stephan Menne; Severin O. Gudima

Hepatitis delta virus (HDV) is a natural subviral agent of human hepatitis B virus (HBV). HDV enhances liver damage during concomitant infection with HBV. The molecular pathogenesis of HDV infection remains poorly understood. To advance our understanding of the relationship between HDV infection and liver cancer, it was determined whether HDV could infect in vivo the cells of hepadnavirus‐induced hepatocellular carcinoma (HCC). Woodchucks (Marmota monax) that were chronically infected with HBV‐related woodchuck hepatitis virus (WHV) and already developed HCCs were used as an experimental model. The locations of HCCs within the livers were determined using ultrasound imaging followed by open surgery. One week after surgery the WHV carrier woodchucks were superinfected with WHV‐enveloped HDV (wHDV). Six weeks later the animals were sacrificed and HDV replication in normal liver tissues and in center masses of HCCs was evidenced by Northern analysis, real‐time polymerase chain reaction assay, and immunohistochemistry. Based on accumulation levels of HDV RNAs and numbers of infected cells, the efficiency of wHDV infection appears to be comparable in most HCCs and normal liver tissues. Conclusion: Cells of WHV‐induced HCCs are susceptible to HDV infection in vivo, and therefore express functional putative WHV receptors and support the steps of the attachment/entry governed by the hepadnavirus envelope proteins. Because others previously hypothesized that hepadnavirus‐induced HCCs are resistant to reinfection with a hepadnavirus in vivo, our data suggest that if such a resistance exists it likely occurs via a block at the post‐entry step. The demonstrated ability of HDV to infect already formed HCCs may facilitate development of novel strategies further dissecting the mechanism of liver pathogenesis associated with HDV infection. (HEPATOLOGY 2012;56:76–85)


Journal of Virology | 2014

Envelope proteins derived from naturally integrated hepatitis B virus DNA support assembly and release of infectious hepatitis delta virus particles.

Natalia Freitas; Celso Cunha; Stephan Menne; Severin O. Gudima

ABSTRACT A natural subviral agent of human hepatitis B virus (HBV), hepatitis delta virus (HDV), requires only the envelope proteins from HBV in order to maintain persistent infection. HBV surface antigens (HBsAgs) can be produced either by HBV replication or from integrated HBV DNA regardless of replication. The functional properties of the integrant-generated HBsAgs were examined using two human hepatocellular carcinoma-derived cell lines, Hep3B and PLC/PRF/5, that contain HBV integrants but do not produce HBV virions and have no signs of HBV replication. Both cell lines were able to support HDV replication and assembly/egress of HDV virions. Neither of the cell lines was able to produce substantial amounts of the pre-S1-containing HDV particles. HDV virions assembled in PLC/PRF/5 cells were able to infect primary human hepatocytes, while Hep3B-derived HDV appeared to be noninfectious. These results correlate with the findings that the entire open reading frame (ORF) for the large (L) envelope protein that is essential for infectivity is present on HBV RNAs from PLC/PRF/5 cells, while an L protein ORF that was truncated and fused to inverted precore sequences was found using RNAs from Hep3B cells. This study demonstrates for the first time that at least some of the HBV DNA sequence naturally integrated during infection can produce functional small and large envelope proteins capable of the formation of infectious HDV virions. Our data indicate that in vivo chronic HDV infection can persist in the absence of HBV replication (or when HBV replication is profoundly suppressed) if functional envelope proteins are supplied from HBV integrants. IMPORTANCE The study addresses the unique mechanism of HDV persistence in the absence of ongoing HBV replication, advances our understanding of HDV-HBV interactions, and supports the implementation of treatments directly targeting HDV for HDV/HBV-infected individuals.


Journal of Virology | 2006

Action of Inhibitors on Accumulation of Processed Hepatitis Delta Virus RNAs

Jinhong Chang; Xingcao Nie; Severin O. Gudima; John M. Taylor

ABSTRACT Hepatitis delta virus (HDV) replication involves processing and accumulation of three RNA species: the genome, its exact complement (the antigenome), and a polyadenylated mRNA that acts as a template for the small delta antigen (δAg), the only protein of HDV and essential for genome replication. In a recently reported experimental system, addition of tetracycline induced synthesis of a DNA-directed source of δAg, producing within 24 h a significant increase in accumulation of newly transcribed and processed HDV RNAs. This induction was used here to study the action of various inhibitors on accumulation. For example, potent and HDV-specific inhibition, in the absence of detected host toxicity, could be obtained with ribavirin, mycophenolic acid, and viramidine. An interpretation is that these inhibitors reduced the available GTP pool, leading to a specific inhibition of the synthesis and accumulation of HDV RNA-directed RNA species. In contrast, no inhibition was observed with l-FMAU (2′-fluoro-5-methyl-β-l-arabinofuranosyl-uridine), alpha interferon, or pegylated alpha interferon. After modifications to the experimental system, it was also possible to examine the effects of three known host RNA polymerase inhibitors on HDV genome replication: amanitin, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), and actinomycin. Of most interest, amanitin at low doses blocked accumulation of HDV RNA-directed mRNA but had less effect on HDV genomic and antigenomic RNAs. Additional experiments indicated that this apparent resistance to amanitin inhibition of genomic and antigenomic RNA relative to mRNA may not reflect a difference in the transcribing polymerase but rather relative differences in the processing and stabilization of nascent RNA transcripts.

Collaboration


Dive into the Severin O. Gudima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Menne

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Celso Cunha

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ning Chai

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Volker Bruss

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Louise Rodrigues

Universidade Nova de Lisboa

View shared research outputs
Researchain Logo
Decentralizing Knowledge