Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Kozyr is active.

Publication


Featured researches published by Natalia Kozyr.


Science | 2001

Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine

Rama Rao Amara; Francois Villinger; John D. Altman; Shari L. Lydy; Shawn P. O'Neil; Silvija I. Staprans; David C. Montefiori; Yan Xu; James G. Herndon; Linda S. Wyatt; Maria Angelito Candido; Natalia Kozyr; Patricia L. Earl; James M. Smith; Hak-Ling Ma; Bennett D. Grimm; Michael L. Hulsey; Joseph D. Miller; Harold M. McClure; Janet M. McNicholl; Bernard Moss; Harriet L. Robinson

Heterologous prime/boost regimens have the potential for raising high levels of immune responses. Here we report that DNA priming followed by a recombinant modified vaccinia Ankara (rMVA) booster controlled a highly pathogenic immunodeficiency virus challenge in a rhesus macaque model. Both the DNA and rMVA components of the vaccine expressed multiple immunodeficiency virus proteins. Two DNA inoculations at 0 and 8 weeks and a single rMVA booster at 24 weeks effectively controlled an intrarectal challenge administered 7 months after the booster. These findings provide hope that a relatively simple multiprotein DNA/MVA vaccine can help to control the acquired immune deficiency syndrome epidemic.


Journal of Virology | 2005

Divergent Host Responses during Primary Simian Immunodeficiency Virus SIVsm Infection of Natural Sooty Mangabey and Nonnatural Rhesus Macaque Hosts

Guido Silvestri; Andrew Fedanov; Stephanie Germon; Natalia Kozyr; William J. Kaiser; David A. Garber; Harold M. McClure; Mark B. Feinberg; Silvija I. Staprans

ABSTRACT To understand how natural sooty mangabey hosts avoid AIDS despite high levels of simian immunodeficiency virus (SIV) SIVsm replication, we inoculated mangabeys and nonnatural rhesus macaque hosts with an identical inoculum of uncloned SIVsm. The unpassaged virus established infection with high-level viral replication in both macaques and mangabeys. A species-specific, divergent immune response to SIV was evident from the first days of infection and maintained in the chronic phase, with macaques showing immediate and persistent T-cell proliferation, whereas mangabeys displayed little T-cell proliferation, suggesting subdued cellular immune responses to SIV. Importantly, only macaques developed CD4+-T-cell depletion and AIDS, thus indicating that in mangabeys limited immune activation is a key mechanism to avoid immunodeficiency despite high levels of SIVsm replication. These studies demonstrate that it is the host response to infection, rather than properties inherent to the virus itself, that causes immunodeficiency in SIV-infected nonhuman primates.


Journal of Virology | 2002

Critical Role for Env as well as Gag-Pol in Control of a Simian-Human Immunodeficiency Virus 89.6P Challenge by a DNA Prime/Recombinant Modified Vaccinia Virus Ankara Vaccine

Rama Rao Amara; James M. Smith; Silvija I. Staprans; David C. Montefiori; Francois Villinger; John D. Altman; Shawn P. O'Neil; Natalia Kozyr; Yan Xu; Linda S. Wyatt; Patricia L. Earl; James G. Herndon; Janet M. McNicholl; Harold M. McClure; Bernard Moss; Harriet L. Robinson

ABSTRACT Cellular immune responses against epitopes in conserved Gag and Pol sequences of human immunodeficiency virus type 1 have become popular targets for candidate AIDS vaccines. Recently, we used a simian-human immunodeficiency virus model (SHIV 89.6P) with macaques to demonstrate the control of a pathogenic mucosal challenge by priming with Gag-Pol-Env-expressing DNA and boosting with Gag-Pol-Env-expressing recombinant modified vaccinia virus Ankara (rMVA). Here we tested Gag-Pol DNA priming and Gag-Pol rMVA boosting to evaluate the contribution of anti-Env immune responses to viral control. The Gag-Pol vaccine raised frequencies of Gag-specific T cells similar to those raised by the Gag-Pol-Env vaccine. Following challenge, these rapidly expanded to counter the challenge infection. Despite this, the control of the SHIV 89.6P challenge was delayed and inconsistent in the Gag-Pol-vaccinated group and all of the animals underwent severe and, in most cases, sustained loss of CD4+ cells. Interestingly, most of the CD4+ cells that were lost in the Gag-Pol-vaccinated group were uninfected cells. We suggest that the rapid appearance of binding antibody for Env in Gag-Pol-Env-vaccinated animals helped protect uninfected CD4+ cells from Env-induced apoptosis. Our results highlight the importance of immune responses to Env, as well as to Gag-Pol, in the control of immunodeficiency virus challenges and the protection of CD4+ cells.


Journal of Virology | 2002

Different Patterns of Immune Responses but Similar Control of a Simian-Human Immunodeficiency Virus 89.6P Mucosal Challenge by Modified Vaccinia Virus Ankara (MVA) and DNA/MVA Vaccines

Rama Rao Amara; Francois Villinger; Silvija I. Staprans; John D. Altman; David C. Montefiori; Natalia Kozyr; Yan Xu; Linda S. Wyatt; Patricia L. Earl; James G. Herndon; Harold M. McClure; Bernard Moss; Harriet L. Robinson

ABSTRACT Recently we demonstrated the control of a mucosal challenge with a pathogenic chimera of simian and human immunodeficiency virus (SHIV-89.6P) by priming with a Gag-Pol-Env-expressing DNA and boosting with a Gag-Pol-Env-expressing recombinant modified vaccinia virus Ankara (DNA/MVA) vaccine. Here we evaluate the ability of the MVA component of this vaccine to serve as both a prime and a boost for an AIDS vaccine. The same immunization schedule, MVA dose, and challenge conditions were used as in the prior DNA/MVA vaccine trial. Compared to the DNA/MVA vaccine, the MVA-only vaccine raised less than 1/10 the number of vaccine-specific T cells but 10-fold-higher titers of binding antibody for Env. Postchallenge, the animals vaccinated with MVA alone increased their CD8 cell numbers to levels that were similar to those seen in DNA/MVA-vaccinated animals. However, they underwent a slower emergence and contraction of antiviral CD8 T cells and were slower to generate neutralizing antibodies than the DNA/MVA-vaccinated animals. Despite this, by 5 weeks postchallenge, the MVA-only-vaccinated animals had achieved as good control of the viral infection as the DNA/MVA group, a situation that has held up to the present time in the trial (48 weeks postchallenge). Thus, MVA vaccines, as well as DNA/MVA vaccines, merit further evaluation for their ability to control the current AIDS pandemic.


Journal of Immunology | 2007

Depletion of CD8+ Cells in Sooty Mangabey Monkeys Naturally Infected with Simian Immunodeficiency Virus Reveals Limited Role for Immune Control of Virus Replication in a Natural Host Species

Ashley P. Barry; Guido Silvestri; Jeffrey T. Safrit; Beth Sumpter; Natalia Kozyr; Harold M. McClure; Silvija I. Staprans; Mark B. Feinberg

SIV infection of sooty mangabeys (SMs), a natural host species, does not cause AIDS despite high-level virus replication. In contrast, SIV infection of nonnatural hosts such as rhesus macaques (RMs) induces an AIDS-like disease. The depletion of CD8+ T cells during SIV infection of RMs results in marked increases in plasma viremia, suggesting a key role for CD8+ T cells in controlling levels of SIV replication. To assess the role that CD8+ T cells play in determining the virologic and immunologic features of nonpathogenic SIV infection in SMs, we transiently depleted CD8+ T cells in SIV-infected and uninfected SMs using a CD8α-specific Ab (OKT8F) previously used in studies of SIV-infected RMs. Treatment of SMs with the OKT8F Ab resulted in the prompt and profound depletion of CD8+ T cells. However, in contrast to CD8+ cell depleted, SIV-infected RMs, only minor changes in the levels of plasma viremia were observed in most SIV-infected SMs during the period of CD8+ cell deficiency. Those SMs demonstrating greater increases in SIV replication following CD8+ cell depletion also displayed higher levels of CD4+ T cell activation and/or evidence of CMV reactivation, suggesting that an expanded target cell pool rather than the absence of CD8+ T cell control may have been primarily responsible for transient increases in viremia. These data indicate that CD8+ T cells exert a limited influence in determining the levels of SIV replication in SMs and provide additional evidence demonstrating that the absence of AIDS in SIV-infected SMs is not due to the effective control of viral replication by cellular immune responses.


Journal of Virology | 2005

Vaccinia Virus Tropism for Primary Hematolymphoid Cells Is Determined by Restricted Expression of a Unique Virus Receptor

Ann Chahroudi; Rahul Chavan; Natalia Kozyr; Edmund K. Waller; Guido Silvestri; Mark B. Feinberg

ABSTRACT The presumed broad tropism of poxviruses has stymied attempts to identify both the cellular receptor(s) and the viral determinant(s) for binding. Detailed studies of poxvirus binding to and infection of primary human cells have not been conducted. In particular, the determinants of target cell infection and the consequences of infection for cells involved in the generation of antiviral immune responses are incompletely understood. In this report, we show that vaccinia virus (VV) exhibits a more restricted tropism for primary hematolymphoid human cells than has been previously recognized. We demonstrate that vaccinia virus preferentially infects antigen-presenting cells (dendritic cells, monocytes/macrophages, and B cells) and activated T cells, but not resting T cells. The infection of activated T cells is permissive, with active viral replication and production of infectious progeny. Susceptibility to infection is determined by restricted expression of a cellular receptor that is induced de novo upon T-cell activation and can be removed from the cell surface by either trypsin or pronase treatment. The VV receptor expressed on activated T cells displays unique characteristics that distinguish it from the receptor used to infect cell lines in culture. The observed restricted tropism of VV may have significant consequences for the understanding of natural poxvirus infection and immunity and for poxvirus-based vaccine development.


Journal of Clinical Investigation | 2004

Blockade of T cell costimulation reveals interrelated actions of CD4+ and CD8+ T cells in control of SIV replication

David A. Garber; Guido Silvestri; Ashley P. Barry; Andrew Fedanov; Natalia Kozyr; Harold M. McClure; David C. Montefiori; Christian P. Larsen; John D. Altman; Silvija I. Staprans; Mark B. Feinberg

In vivo blockade of CD28 and CD40 T cell costimulation pathways during acute simian immunodeficiency virus (SIV) infection of rhesus macaques was performed to assess the relative contributions of CD4+ T cells, CD8+ T cells, and Ab responses in modulating SIV replication and disease progression. Transient administration of CTLA4-Ig and anti-CD40L mAb to SIV-infected rhesus macaques resulted in dramatic inhibition of the generation of both SIV-specific cellular and humoral immune responses. Acute levels of proliferating CD8+ T cells were associated with early control of SIV viremia but did not predict ensuing set point viremia or survival. The level of in vivo CD4+ T cell proliferation during acute SIV infection correlated with concomitant peak levels of SIV plasma viremia, whereas measures of in vivo CD4+ T cell proliferation that extended into chronic infection correlated with lower SIV viral load and increased survival. These results suggest that proliferating CD4+ T cells function both as sources of virus production and as antiviral effectors and that increased levels of CD4+ T cell proliferation during SIV infections reflect antigen-driven antiviral responses rather than a compensatory homeostatic response. These results highlight the interrelated actions of CD4+ and CD8+ T cell responses in vivo that modulate SIV replication and pathogenesis.


American Journal of Transplantation | 2012

Regulatory T Cells Exhibit Decreased Proliferation but Enhanced Suppression After Pulsing With Sirolimus

Karnail Singh; Natalia Kozyr; Linda Stempora; Allan D. Kirk; Christian P. Larsen; Bruce R. Blazar; Leslie S. Kean

Although regulatory T cells (Tregs) suppress allo‐immunity, difficulties in their large‐scale production and in maintaining their suppressive function after expansion have thus far limited their clinical applicability. Here we have used our nonhuman primate model to demonstrate that significant ex vivo Treg expansion with potent suppressive capacity can be achieved and that Treg suppressive capacity can be further enhanced by their exposure to a short pulse of sirolimus. Both unpulsed and sirolimus‐pulsed Tregs (SPTs) are capable of inhibiting proliferation of multiple T cell subpopulations, including CD4+ and CD8+ T cells, as well as antigen‐experienced CD28+CD95+ memory and CD28−CD95+ effector subpopulations. We further show that Tregs can be combined in vitro with CTLA4‐Ig (belatacept) to lead to enhanced inhibition of allo‐proliferation. SPTs undergo less proliferation in a mixed lymphocyte reaction (MLR) when compared with unpulsed Tregs, suggesting that Treg‐mediated suppression may be inversely related to their proliferative capacity. SPTs also display increased expression of CD25 and CTLA4, implicating signaling through these molecules in their enhanced function. Our results suggest that the creation of SPTs may provide a novel avenue to enhance Treg‐based suppression of allo‐immunity, in a manner amenable to large‐scale ex vivo expansion and combinatorial therapy with novel, costimulation blockade‐based immunosuppression strategies.


Journal of Immunology | 2011

Distinctive TLR7 Signaling, Type I IFN Production, and Attenuated Innate and Adaptive Immune Responses to Yellow Fever Virus in a Primate Reservoir Host

Judith N. Mandl; Rama Akondy; Benton Lawson; Natalia Kozyr; Silvija I. Staprans; Rafi Ahmed; Mark B. Feinberg

Why cross-species transmissions of zoonotic viral infections to humans are frequently associated with severe disease when viruses responsible for many zoonotic diseases appear to cause only benign infections in their reservoir hosts is unclear. Sooty mangabeys (SMs), a reservoir host for SIV, do not develop disease following SIV infection, unlike nonnatural HIV-infected human or SIV-infected rhesus macaque (RM) hosts. SIV infections of SMs are characterized by an absence of chronic immune activation, in association with significantly reduced IFN-α production by plasmacytoid dendritic cells (pDCs) following exposure to SIV or other defined TLR7 or TLR9 ligands. In this study, we demonstrate that SM pDCs produce significantly less IFN-α following ex vivo exposure to the live attenuated yellow fever virus 17D strain vaccine, a virus that we show is also recognized by TLR7, than do RM or human pDCs. Furthermore, in contrast to RMs, SMs mount limited activation of innate immune responses and adaptive T cell proliferative responses, along with only transient antiviral Ab responses, following infection with yellow fever vaccine 17D strain. However, SMs do raise significant and durable cellular and humoral immune responses comparable to those seen in RMs when infected with modified vaccinia Ankara, a virus whose immunogenicity does not require TLR7/9 recognition. Hence, differences in the pattern of TLR7 signaling and type I IFN production by pDCs between primate species play an important role in determining their ability to mount and maintain innate and adaptive immune responses to specific viruses, and they may also contribute to determining whether disease follows infection.


Journal of Virology | 2005

Signature for Long-Term Vaccine-Mediated Control of a Simian and Human Immunodeficiency Virus 89.6P Challenge: Stable Low-Breadth and Low-Frequency T-Cell Response Capable of Coproducing Gamma Interferon and Interleukin-2

Shanmugalakshmi Sadagopal; Rama Rao Amara; David C. Montefiori; Linda S. Wyatt; Silvija I. Staprans; Natalia Kozyr; Harold M. McClure; Bernard Moss; Harriet L. Robinson

ABSTRACT In 2001, we reported 20 weeks of control of challenge with the virulent 89.6P chimera of simian and human immunodeficiency viruses (SHIV-89.6P) by a Gag-Pol-Env vaccine consisting of DNA priming and modified vaccinia virus Ankara boosting. Here we report that 22 out of 23 of these animals successfully controlled their viremia until their time of euthanasia at 200 weeks postchallenge. At euthanasia, all animals had low to undetectable viral loads and normal CD4 counts. During the long period of viral control, gamma interferon (IFN-γ)-producing antiviral T cells were present at unexpectedly low breadths and frequencies. Most animals recognized two CD8 and one CD4 epitope and had frequencies of IFN-γ-responding T cells from 0.01 to 0.3% of total CD8 or CD4 T cells. T-cell responses were remarkably stable over time and, unlike responses in most immunodeficiency virus infections, maintained good functional characteristics, as evidenced by coproduction of IFN-γ and interleukin-2. Overall, high titers of binding and neutralizing antibody persisted throughout the postchallenge period. Encouragingly, long-term control was effective in macaques of diverse histocompatibility types.

Collaboration


Dive into the Natalia Kozyr's collaboration.

Top Co-Authors

Avatar

Harold M. McClure

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark B. Feinberg

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Guido Silvestri

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Bernard Moss

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Harriet L. Robinson

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda S. Wyatt

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge