Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Mitin is active.

Publication


Featured researches published by Natalia Mitin.


Current Biology | 2005

Signaling Interplay in Ras Superfamily Function

Natalia Mitin; Kent L. Rossman; Channing J. Der

Ras proteins function as signaling hubs that are activated by convergent signaling pathways initiated by extracellular stimuli. Activated Ras in turn regulates a diversity of downstream cytoplasmic signaling cascades. Ras proteins are founding members of a large superfamily of small GTPases that have significant sequence and biochemical similarities. Recent observations have established a complex signaling interplay between Ras and other members of the family. A key biochemical mechanism facilitating this crosstalk involves guanine nucleotide exchange factors (GEFs), which serve as regulators and effectors, as well as signaling integrators, of Ras signaling.


Journal of Biological Chemistry | 2008

Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification.

Patrick J. Roberts; Natalia Mitin; Patricia J. Keller; Emily J. Chenette; James P. Madigan; Rachel O. Currin; Adrienne D. Cox; Oswald Wilson; Paul Kirschmeier; Channing J. Der

Rho GTPases (20 human members) comprise a major branch of the Ras superfamily of small GTPases, and aberrant Rho GTPase function has been implicated in oncogenesis and other human diseases. Although many of our current concepts of Rho GTPases are based on the three classical members (RhoA, Rac1, and Cdc42), recent studies have revealed the diversity of biological functions mediated by other family members. A key basis for the functional diversity of Rho GTPases is their association with distinct subcellular compartments, which is dictated in part by three posttranslational modifications signaled by their carboxyl-terminal CAAX (where C represents cysteine, A is an aliphatic amino acid, and X is a terminal amino acid) tetrapeptide motifs. CAAX motifs are substrates for the prenyltransferase-catalyzed addition of either farnesyl or geranylgeranyl isoprenoid lipids, Rce1-catalyzed endoproteolytic cleavage of the AAX amino acids, and Icmt-catalyzed carboxyl methylation of the isoprenylcysteine. We utilized pharmacologic, biochemical, and genetic approaches to determine the sequence requirements and roles of CAAX signal modifications in dictating the subcellular locations and functions of the Rho GTPase family. Although the classical Rho GTPases are modified by geranylgeranylation, we found that a majority of the other Rho GTPases are substrates for farnesyltransferase. We found that the membrane association and/or function of Rho GTPases are differentially dependent on Rce1- and Icmt-mediated modifications. Our results further delineate the sequence requirements for prenyltransferase specificity and functional roles for protein prenylation in Rho GTPase function. We conclude that a majority of Rho GTPases are targets for pharmacologic inhibitors of farnesyltransferase, Rce1, and Icmt.


Cancer Research | 2006

Mist1-KrasG12D Knock-In Mice Develop Mixed Differentiation Metastatic Exocrine Pancreatic Carcinoma and Hepatocellular Carcinoma

David A. Tuveson; Liqin Zhu; Aarthi Gopinathan; Nicholas A. Willis; Leili Kachatrian; Rebecca Grochow; Christopher L. Pin; Natalia Mitin; Elizabeth J. Taparowsky; Phyllis A. Gimotty; Ralph H. Hruban; Tyler Jacks; Stephen F. Konieczny

Despite the prevalence of oncogenic Kras mutations in the earliest stages of pancreatic ductal adenocarcinoma, the cellular compartment in which oncogenic Kras initiates tumorigenesis remains unknown. To address this, we have gene targeted KrasG12D into the open reading frame of Mist1, a basic helix-loop-helix transcription factor that is expressed during pancreatic development and required for proper pancreatic acinar organization. Although the pancreata of Mist1(KrasG12D/+) mutant mice predictably exhibited acinar metaplasia and dysplasia, the frequent death of these mice from invasive and metastatic pancreatic cancer with mixed histologic characteristics, including acinar, cystic, and ductal features, was unexpected and in contrast to previously described mutant mice that ectopically expressed the Kras oncogene in either acinar or ductal compartments. Interestingly, many of the mutant mice developed hepatocellular carcinoma, implicating Mist1(KrasG12D/+) cells in both pancreatic and hepatic neoplasia. Concomitant Trp53+/- mutation cooperated with Mist1(KrasG12D/+) to accelerate lethality and was associated with advanced histopathologic findings, including parenchymal liver metastasis. These findings suggest that Mist1-expressing cells represent a permissive compartment for transformation by oncogenic Kras in pancreatic tumorigenesis.


Oncogene | 2000

B-ATF functions as a negative regulator of AP-1 mediated transcription and blocks cellular transformation by Ras and Fos

Deborah R. Echlin; Hyi Jeong Tae; Natalia Mitin; Elizabeth J. Taparowsky

B-ATF is a nuclear basic leucine zipper protein that belongs to the AP-1/ATF superfamily of transcription factors. Northern blot analysis reveals that the human B-ATF gene is expressed most highly in hematopoietic tissues. Interaction studies in vitro and in vivo show that the leucine zipper of B-ATF mediates dimerization with members of the Jun family of proteins. Chimeric proteins consisting of portions of B-ATF and the DNA binding domain of the yeast activator GAL4 do not stimulate reporter gene expression in mammalian cells, indicating that B-ATF does not contain a conventional transcription activation domain. Jun/B-ATF dimers display similar DNA binding profiles as Jun/Fos dimers, with a bias toward binding TRE (12-O-tetradecanolyphorbol-13-acetate-response element) over CRE (cyclic AMP-response element) DNA sites. B-ATF inhibits transcriptional activation of a reporter gene containing TRE sites in a dose-dependent manner, presumably by competing with Fos for Jun and forming transcriptionally inert Jun/B-ATF heterodimers. Stable expression of B-ATF in C3H10T1/2 cells does not reduce cell viability, but does result in a reduced cellular growth rate when compared to controls. This effect is dominant in the presence of the growth promoting effects of the H-Ras or the v-Fos oncoproteins, since expression of B-ATF restricts the efficiency of focus formation by these transforming agents. These findings demonstrate that B-ATF is a tissue-specific transcription factor with the potential to function as a dominant-negative to AP-1.


Cancer Discovery | 2017

Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse

Marco Demaria; Monique N. O'Leary; Jianhui Chang; Lijian Shao; Su Liu; Fatouma Alimirah; Kristin Koenig; Catherine Le; Natalia Mitin; Allison M. Deal; Shani Alston; Emmeline C. Academia; Sumner Kilmarx; Alexis Valdovinos; Boshi Wang; Alain de Bruin; Brian K. Kennedy; Simon Melov; Daohong Zhou; Norman E. Sharpless; Hyman B. Muss; Judith Campisi

Cellular senescence suppresses cancer by irreversibly arresting cell proliferation. Senescent cells acquire a proinflammatory senescence-associated secretory phenotype. Many genotoxic chemotherapies target proliferating cells nonspecifically, often with adverse reactions. In accord with prior work, we show that several chemotherapeutic drugs induce senescence of primary murine and human cells. Using a transgenic mouse that permits tracking and eliminating senescent cells, we show that therapy-induced senescent (TIS) cells persist and contribute to local and systemic inflammation. Eliminating TIS cells reduced several short- and long-term effects of the drugs, including bone marrow suppression, cardiac dysfunction, cancer recurrence, and physical activity and strength. Consistent with our findings in mice, the risk of chemotherapy-induced fatigue was significantly greater in humans with increased expression of a senescence marker in T cells prior to chemotherapy. These findings suggest that senescent cells can cause certain chemotherapy side effects, providing a new target to reduce the toxicity of anticancer treatments. SIGNIFICANCE Many genotoxic chemotherapies have debilitating side effects and also induce cellular senescence in normal tissues. The senescent cells remain chronically present where they can promote local and systemic inflammation that causes or exacerbates many side effects of the chemotherapy. Cancer Discov; 7(2); 165-76. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 115.


Oncogene | 2010

Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling

Ariella B. Hanker; Natalia Mitin; Rhonda S. Wilder; Elizabeth P. Henske; Fuyuhiko Tamanoi; Adrienne D. Cox; Channing J. Der

The Rheb1 and Rheb2 small GTPases and their effector mTOR are aberrantly activated in human cancer and are attractive targets for anti-cancer drug discovery. Rheb is targeted to endomembranes via its C-terminal CAAX (C=cysteine, A=aliphatic, X=terminal amino acid) motif, a substrate for posttranslational modification by a farnesyl isoprenoid. After farnesylation, Rheb undergoes two additional CAAX-signaled processing steps, Ras converting enzyme 1 (Rce1)-catalyzed cleavage of the AAX residues and isoprenylcysteine carboxyl methyltransferase (Icmt)-mediated carboxylmethylation of the farnesylated cysteine. However, whether these postprenylation processing steps are required for Rheb signaling through mTOR is not known. We found that Rheb1 and Rheb2 localize primarily to the endoplasmic reticulum and Golgi apparatus. We determined that Icmt and Rce1 processing is required for Rheb localization, but is dispensable for Rheb-induced activation of the mTOR substrate p70 S6 kinase (S6K). Finally, we evaluated whether farnesylthiosalicylic acid (FTS) blocks Rheb localization and function. Surprisingly, FTS prevented S6K activation induced by a constitutively active mTOR mutant, indicating that FTS inhibits mTOR at a level downstream of Rheb. We conclude that inhibitors of Icmt and Rce1 will not block Rheb function, but FTS could be a promising treatment for Rheb- and mTOR-dependent cancers.


Journal of Biological Chemistry | 2004

Identification and Characterization of Rain, a Novel Ras-interacting Protein with a Unique Subcellular Localization

Natalia Mitin; Melissa B. Ramocki; Alfred J. Zullo; Channing J. Der; Stephen F. Konieczny; Elizabeth J. Taparowsky

The Ras small GTPase functions as a signaling node and is activated by extracellular stimuli. Upon activation, Ras interacts with a spectrum of functionally diverse downstream effectors and stimulates multiple cytoplasmic signaling cascades that regulate cellular proliferation, differentiation, and apoptosis. In addition to the association of Ras with the plasma membrane, recent studies have established an association of Ras with Golgi membranes. Whereas the effectors of signal transduction by activated, plasma membrane-localized Ras are well characterized, very little is known about the effectors used by Golgi-localized Ras. In this study, we report the identification of a novel Ras-interacting protein, Rain, that may serve as an effector for endomembrane-associated Ras. Rain does not share significant sequence similarity with any known mammalian proteins, but contains a Ras-associating domain that is found in RalGDS, AF-6, and other characterized Ras effectors. Rain interacts with Ras in a GTP-dependent manner in vitro and in vivo, requires an intact Ras core effector-binding domain for this interaction, and thus fits the definition of a Ras effector. Unlike other Ras effectors, however, Rain is localized to perinuclear, juxta-Golgi vesicles in intact cells and is recruited to the Golgi by activated Ras. Finally, we found that Rain cooperates with activated Raf and causes synergistic transformation of NIH3T3 cells. Taken together, these observations support a role for Rain as a novel protein that can serve as an effector of endomembrane-localized Ras.


Journal of Biological Chemistry | 2009

Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform

Jiyoung Y. Cha; Savitri Maddileti; Natalia Mitin; T. Kendall Harden; Channing J. Der

Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling.


Molecular and Cellular Biology | 2002

Identification of novel MyoD gene targets in proliferating myogenic stem cells.

Jeffrey C. Wyzykowski; Therry I. Winata; Natalia Mitin; Elizabeth J. Taparowsky; Stephen F. Konieczny

ABSTRACT A major control point for skeletal myogenesis revolves around the muscle basic helix-loop-helix gene family that includes MyoD, Myf-5, myogenin, and MRF4. Myogenin and MRF4 are thought to be essential to terminal differentiation events, whereas MyoD and Myf-5 are critical to establishing the myogenic cell lineage and producing committed, undifferentiated myogenic stem cells (myoblasts). Although mouse genetic studies have revealed the importance of MyoD and Myf-5 for myoblast development, the genetic targets of MyoD and Myf-5 activity in undifferentiated myoblasts remain unknown. In this study, we investigated the function of MyoD as a transcriptional activator in undifferentiated myoblasts. By using conditional expression of MyoD, in conjunction with suppression subtractive hybridizations, we show that the Id3 and NP1 (neuronal pentraxin 1) genes become transcriptionally active following MyoD induction in undifferentiated myoblasts. Activation of Id3 and NP1 represents a stable, heritable event that does not rely on continued MyoD activity and is not subject to negative regulation by an activated H-Ras G12V protein. These results are the first to demonstrate that MyoD functions as a transcriptional activator in myogenic stem cells and that this key myogenic regulatory factor exhibits different gene target specificities, depending upon the cellular environment.


Journal of Biological Chemistry | 2012

Phosphorylation by Protein Kinase Cα Regulates RalB Small GTPase Protein Activation, Subcellular Localization, and Effector Utilization

Timothy D. Martin; Natalia Mitin; Adrienne D. Cox; Jen Jen Yeh; Channing J. Der

Background: There is increasing evidence for post-translational mechanisms that regulate small GTPase function. Results: PKCα-mediated phosphorylation regulates RalB activity, subcellular localization, and effector interaction. Conclusion: Phosphorylation is important for RalB regulation of exocyst function and trafficking. Significance: The GTP-bound state of RalB alone does not determine activation state and activity. Ras-like (Ral) small GTPases are regulated downstream of Ras and the noncanonical Ral guanine nucleotide exchange factor (RalGEF) effector pathway. Despite RalA and RalB sharing 82% sequence identity and utilization of shared effector proteins, their roles in normal and neoplastic cell growth have been shown to be highly distinct. Here, we determined that RalB function is regulated by protein kinase Cα (PKCα) phosphorylation. We found that RalB phosphorylation on Ser-198 in the C-terminal membrane targeting sequence resulted in enhanced RalB endomembrane accumulation and decreased RalB association with its effector, the exocyst component Sec5. Additionally, RalB phosphorylation regulated vesicular trafficking and membrane fusion by regulating v- and t-SNARE interactions. RalB phosphorylation regulated vesicular traffic of α5-integrin to the cell surface and cell attachment to fibronectin. In summary, our data suggest that phosphorylation by PKCα is critical for RalB-mediated vesicle trafficking and exocytosis.

Collaboration


Dive into the Natalia Mitin's collaboration.

Top Co-Authors

Avatar

Channing J. Der

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kent L. Rossman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Adrienne D. Cox

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Emily J. Chenette

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Norman E. Sharpless

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Allison M. Deal

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chad Torrice

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge