Natalia S. Corbalán
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natalia S. Corbalán.
PLOS ONE | 2012
Conrado Adler; Natalia S. Corbalán; Mohammad R. Seyedsayamdost; María Fernanda Pomares; Ricardo E. de Cristóbal; Jon Clardy; Roberto Kolter; Paula A. Vincent
Background Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition. Methods and Principal Findings Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity. Conclusions We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress. These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.
PLOS ONE | 2014
Conrado Adler; Natalia S. Corbalán; Daiana R. Peralta; María Fernanda Pomares; Ricardo E. de Cristóbal; Paula A. Vincent
Numerous bacteria have evolved different iron uptake systems with the ability to make use of their own and heterologous siderophores. However, there is growing evidence attributing alternative roles for siderophores that might explain the potential adaptive advantages of microorganisms having multiple siderophore systems. In this work, we show the requirement of the siderophore enterobactin for Escherichia coli colony development in minimal media. We observed that a strain impaired in enterobactin production (entE mutant) was unable to form colonies on M9 agar medium meanwhile its growth was normal on LB agar medium. Given that, neither iron nor citrate supplementation restored colony growth, the role of enterobactin as an iron uptake-facilitator would not explain its requirement for colony development. The absence of colony development was reverted either by addition of enterobactin, the reducing agent ascorbic acid or by incubating in anaerobic culture conditions with no additives. Then, we associated the enterobactin requirement for colony development with its ability to reduce oxidative stress, which we found to be higher in media where the colony development was impaired (M9) compared with media where the strain was able to form colonies (LB). Since oxyR and soxS mutants (two major stress response regulators) formed colonies in M9 agar medium, we hypothesize that enterobactin could be an important piece in the oxidative stress response repertoire, particularly required in the context of colony formation. In addition, we show that enterobactin has to be hydrolyzed after reaching the cell cytoplasm in order to enable colony development. By favoring iron release, hydrolysis of the enterobactin-iron complex, not only would assure covering iron needs, but would also provide the cell with a molecule with exposed hydroxyl groups (hydrolyzed enterobactin). This molecule would be able to scavenge radicals and therefore reduce oxidative stress.
Journal of Bacteriology | 2013
Natalia S. Corbalán; Giulia Runti; Conrado Adler; Sonia Covaceuszach; Robert C. Ford; Doriano Lamba; Konstantinos Beis; Marco Scocchi; Paula A. Vincent
SbmA protein has been proposed as a dimeric secondary transporter. The protein is involved in the transport of microcins B17 and J25, bleomycin, proline-rich antimicrobial peptides, antisense peptide phosphorodiamidate morpholino oligomers, and peptide nucleic acids into the Escherichia coli cytoplasm. The sbmA homologue is found in a variety of bacteria, though the physiological role of the protein is hitherto unknown. In this work, we carried out a functional and structural analysis to determine which amino acids are critical for the transport properties of SbmA. We created a set of 15 site-directed sbmA mutants in which single conserved amino acids were replaced by glycine residues. Our work demonstrated that strains carrying the site-directed mutants V102G, F219G, and E276G had a null phenotype for SbmA transport functions. In contrast, strains carrying the single point mutants W19G, W53G, F60G, S69G, N155G, R190, L233G, A344G, T255G, N308G, and R385G showed transport capacities indistinguishable from those of strains harboring a wild-type sbmA. The strain carrying the Y116G mutant exhibited mixed phenotypic characteristics. We also demonstrated that those sbmA mutants with severely impaired transport capacity showed a dominant negative phenotype. Electron microscopy data and in silico three-dimensional (3D) homology modeling support the idea that SbmA forms a homodimeric complex, closely resembling the membrane-spanning region of the ATP-binding cassette transporter family. Direct mapping of the sbmA single point mutants on the protein surface allowed us to explain the observed phenotypic differences in transport ability.
FEBS Letters | 2013
Alejandro de Athayde Moncorvo Collado; Natalia S. Corbalán; László Homolya; Roberto D. Morero; Carlos Minahk
ABCG1 is a half‐sized transporter with an unquestionable importance in cholesterol homeostasis. So far, its expression and thus its activity was suggested to be regulated at transcriptional level by LXR and PPAR agonists including polyphenols. However, it is unknown whether there are other mechanisms of up‐regulation of ABCG1 activity. In the present work resveratrol was shown to induce a nearly twofold increase in ATPase activity of reconstituted ABCG1. Evidence is presented for the first time suggesting that resveratrol is able to activate ABCG1 activity by an alternative mechanism that involves an indirect interaction.
Fems Microbiology Letters | 2010
Natalia S. Corbalán; Conrado Adler; Ricardo E. de Cristóbal; María Fernanda Pomares; Mónica A. Delgado; Paula A. Vincent
The SbmA protein is involved in the transport of MccB17-, MccJ25-, bleomycin- and proline-rich peptides into the Escherichia coli cytoplasm. sbmA gene homologues were found in a variety of bacteria. However, the physiological role of this protein still remains unknown. Previously, we found that a combination of sbmA and tolC mutations in Tn10-carrying E. coli K-12 strains results in hypersusceptibility to tetracycline. In this work, we studied sbmA expression in a tolC mutant background and observed an increased expression throughout growth. We ruled out the global transcriptional regulator RpoS and the small RNA micF as intermediates in this regulation. The tolC mutation induced the expression of other well-characterized strong σ(E) -dependent promoters in E. coli. We observed that the increase in σ(E) activity led to a greater sbmA expression, conversely eliminating σ(E) prevented expression of sbmA. We also observed that the sbmA upregulation in a tolC mutant context was abolished in an rpoE-null strain. These results suggest a σ(E) -dependent positive regulation on sbmA by the tolC mutation. We hypothesize that this mechanism might be part of a compensatory cell envelope stress response.
Applied and Environmental Microbiology | 2010
María Fernanda Pomares; Mónica A. Delgado; Natalia S. Corbalán; Ricardo N. Farías; Paula A. Vincent
ABSTRACT Microcin J25 (MccJ25) is a plasmid-encoded, 21-amino-acid, antibacterial peptide produced by Escherichia coli. MccJ25 inhibits RNA polymerase and the membrane respiratory chain. MccJ25 uptake into E. coli-sensitive strains is mediated by the outer membrane receptor FhuA and the inner membrane proteins TonB, ExbB, ExbD, and SbmA. This peptide is active on some E. coli, Salmonella, and Shigella species strains, while other Gram-negative bacteria, such as clinical isolates of Enterobacter cloacae, Citrobacter freundii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Moraxella catarrhalis, and Salmonella enterica serovar Typhimurium, are completely resistant. In the present work, we demonstrated that the membrane-permeabilizing peptide (KFF)3K made some resistant strains sensitive to MccJ25, among them S. Typhimurium, where the antibiotic inhibits in vitro cell growth and bacterial replication within macrophages. The results demonstrate that the membrane permeabilization induced by (KFF)3K allows MccJ25 penetration in an FhuA and SbmA-independent manner and suggest that the combination of both peptides could be considered as a therapeutic agent against pathogenic Salmonella strains.
Food and Bioprocess Technology | 2015
Leonardo Acuña; Natalia S. Corbalán; Inmaculada C. Fernández-No; Roberto D. Morero; Jorge Barros-Velázquez; Augusto Bellomio
Bacteriocins are being used as new food biopreservative agents. In general, bacteriocins produced by Gram-positive bacteria are active against other Gram-positive. Basically, the same principle applies to those produced by Gram-negative bacteria. They have a restricted spectrum of action against related bacteria to those that produce the bacteriocin. Therefore, other hurdles or chemical preservatives are necessary to apply to broaden the spectrum of action of bacteriocins in foods. This is a further and deeper study of the possible application of the hybrid wide-spectrum bacteriocin named Ent35-MccV in food. Its antimicrobial activity was assayed in skim milk and patties as food models against Listeria monocytogenes and Escherichia coli. The influence of the temperature and digestive proteases on its biological activity and its antimicrobial activity was tested in vitro on a variety of pathogenic and food spoilage bacteria. The results showed that Ent35-MccV could inhibit the growth of both the Gram-positive L. monocytogenes and the Gram-negative E. coli in model food, and its activity was not affected by heating conditions including autoclaving. E. coli strains and Listeria spp. are the most affected bacteria, but Ent35-MccV showed antimicrobial activity against some strain of Salmonella spp., Staphylococcus epidermidis, Enterobacter aerogenes, Morganella morgani, Proteus mirabilis, Shigella boydii, Shigella flexneri, and Shigella sonnei.
PLOS ONE | 2016
Daiana R. Peralta; Conrado Adler; Natalia S. Corbalán; Enrique Carlos Paz García; María Fernanda Pomares; Paula A. Vincent
Microorganisms produce siderophores to facilitate iron uptake and even though this trait has been extensively studied, there is growing evidence suggesting that siderophores may have other physiological roles aside from iron acquisition. In support of this notion, we previously linked the archetypal siderophore enterobactin with oxidative stress alleviation. To further characterize this association, we studied the sensitivity of Escherichia coli strains lacking different components of the enterobactin system to the classical oxidative stressors hydrogen peroxide and paraquat. We observed that strains impaired in enterobactin production, uptake and hydrolysis were more susceptible to the oxidative damage caused by both compounds than the wild-type strain. In addition, meanwhile iron supplementation had little impact on the sensitivity, the reducing agent ascorbic acid alleviated the oxidative stress and therefore significantly decreased the sensitivity to the stressors. This indicated that the enterobactin-mediated protection is independent of its ability to scavenge iron. Furthermore, enterobactin supplementation conferred resistance to the entE mutant but did not have any protective effect on the fepG and fes mutants. Thus, we inferred that only after enterobactin is hydrolysed by Fes in the cell cytoplasm and iron is released, the free hydroxyl groups are available for radical stabilization. This hypothesis was validated testing the ability of enterobactin to scavenge radicals in vitro. Given the strong connection between enterobactin and oxidative stress, we studied the transcription of the entE gene and the concomitant production of the siderophore in response to such kind of stress. Interestingly, we observed that meanwhile iron represses the expression and production of the siderophore, hydrogen peroxide and paraquat favour these events even if iron is present. Our results support the involvement of enterobactin as part of the oxidative stress response and highlight the existence of a novel regulation mechanism for enterobactin biosynthesis.
BMC Microbiology | 2013
María Fernanda Pomares; Natalia S. Corbalán; Conrado Adler; Ricardo E. de Cristóbal; Ricardo N. Farías; Mónica A. Delgado; Paula A. Vincent
BackgroundMicrocin J25 (MccJ25) is a plasmid-encoded antibiotic peptide produced by Escherichia coli (E. coli). MccJ25 enters into the sensitive E. coli strains by the outer membrane receptor FhuA and the inner membrane proteins TonB, ExbB, ExbD and SbmA. The resistance of Salmonella enterica serovar Typhimurium (S. Typhimurium) to MccJ25 is attributed to the inability of its FhuA protein to incorporate the antibiotic into the cell.ResultsIn this work we demonstrate that S. Typhimurium becomes notably susceptible to MccJ25 when replicating within macrophages. In order to determine the possible cause of this phenomenon, we studied the sensitivity of S. Typhimurium to MccJ25 at conditions resembling those of the internal macrophage environment, such as low pH, low magnesium and iron deprivation. We observed that the strain was only sensitive to the antibiotic at low pH, leading us to attribute the bacterial sensitization to this condition. A MccJ25-resistant E. coli strain in which fhuA is deleted was also inhibited by the antibiotic at low pH. Then, we could assume that the MccJ25 sensitivity change observed in both E. coli fhuA and S. Typhimurium is mediated by a MccJ25 uptake independent of the FhuA receptor. Moreover, low pH incubation also sensitized S. Typhimurium to the hydrophobic antibiotic novobiocin, which does not affect enteric bacteria viability because it is unable to penetrate the bacterial outer membrane. This observation supports our hypothesis about low pH producing a modification in the bacterial membrane permeability that allows an unspecific MccJ25 uptake. On the other hand, MccJ25 inhibited S. Typhimurium when cells were preincubated in acidic pH medium and then treated at neutral pH with the antibiotic.ConclusionsOur results suggest that acidic condition does not alter MccJ25 hydrophobicity but irreversibly modifies bacterial membrane permeability. This would allow an unspecific antibiotic uptake into the cell.From our data it is possible to infer that intracellular pathogenic strains, which are in vitro resistant to MccJ25, could become susceptible ones in vivo. Therefore, the MccJ25 action spectrum would be broader than what in vitro experiments indicate.
Acta Horticulturae | 2015
Conrado Adler; Gabriela Michavila; Fabián E. López; Natalia S. Corbalán; María J. Lami; María Paula Filippone; Atilio Pedro Castagnaro; Paula A. Vincent; Ricardo E. de Cristóbal
Collaboration
Dive into the Natalia S. Corbalán's collaboration.
Alejandro de Athayde Moncorvo Collado
National Scientific and Technical Research Council
View shared research outputs