Paula A. Vincent
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paula A. Vincent.
Journal of Bacteriology | 2007
Augusto Bellomio; Paula A. Vincent; Beatriz F. de Arcuri; Ricardo N. Farías; Roberto D. Morero
Microcin J25 (MccJ25) uptake by Escherichia coli requires the outer membrane receptor FhuA and the inner membrane proteins TonB, ExbD, ExbB, and SbmA. MccJ25 appears to have two intracellular targets: (i) RNA polymerase (RNAP), which has been described in E. coli and Salmonella enterica serovars, and (ii) the respiratory chain, reported only in S. enterica serovars. In the current study, it is shown that the observed difference between the actions of microcin on the respiratory chain in E. coli and S. enterica is due to the relatively low microcin uptake via the chromosomally encoded FhuA. Higher expression by a plasmid-encoded FhuA allowed greater uptake of MccJ25 by E. coli strains and the consequent inhibition of oxygen consumption. The two mechanisms, inhibition of RNAP and oxygen consumption, are independent of each other. Further analysis revealed for the first time that MccJ25 stimulates the production of reactive oxygen species (O(2)(*-)) in bacterial cells, which could be the main reason for the damage produced on the membrane respiratory chain.
PLOS ONE | 2012
Conrado Adler; Natalia S. Corbalán; Mohammad R. Seyedsayamdost; María Fernanda Pomares; Ricardo E. de Cristóbal; Jon Clardy; Roberto Kolter; Paula A. Vincent
Background Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition. Methods and Principal Findings Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity. Conclusions We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress. These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.
Current Medicinal Chemistry | 2009
Paula A. Vincent; Roberto D. Morero
Microcin J25 (MccJ25) is a plasmid-encoded peptide of 21 L-amino acids (G1-G-A-G-H5-V-P-E-Y-F10-V-G-I-G-T15-P-I-S-F-Y20-G), excreted to the medium by an Escherichia coli strain. MccJ25 is active on Gram-negative bacteria related to the producer strain, including some pathogenic strains. The four-plasmid genes mcjABCD, are involved in MccJ25 production: mcjA encodes a 58-residue precursor, mcjB and mcjC codify two processing enzymes required for the in vivo synthesis of the mature peptide and mcjD encodes the immunity protein (McjD), a member of the super family of ABC transporters. Immunity is mediated by active efflux of the peptide, keeping its intracellular concentration below a critical level. YojI, a chromosomal protein with ATP-binding-cassette-type exporter homology, is also able to export MccJ25. The E. coli outer membrane protein, TolC, is necessary for MccJ25 secretion mediated by either McjD or YojI. The uptake of MccJ25 is dependent on the outer-membrane receptor FhuA and the four inner-membrane proteins TonB, ExbD, ExbB and SbmA. At least two mechanisms described the action of MccJ25 on the target cells: (1) inhibition of the RNA-polymerase (RNAP) activity by obstructing the secondary channel, and consequently, preventing the access of the substrates to its active sites; and (2) operating on the cell membrane, MccJ25 disrupts the electric potential inhibiting the oxygen consumption in Salmonella enterica. MccJ25 also inhibits oxygen consumption and the respiratory chain enzymes in E. coli throughout the increasing of ROS concentration. Nevertheless the exact mechanism of this phenomenon must be elucidated. The MccJ25 exhibits a prolonged antimicrobial activity in a mouse infection model, suggesting a noteworthy potential for therapeutic uses.
Journal of Bacteriology | 2005
Mónica A. Delgado; Paula A. Vincent; Ricardo N. Farías; Raúl A. Salomón
In the present study, we showed that yojI, an Escherichia coli open reading frame with an unknown function, mediates resistance to the peptide antibiotic microcin J25 when it is expressed from a multicopy vector. Disruption of the single chromosomal copy of yojI increased sensitivity of cells to microcin J25. The YojI protein was previously assumed to be an ATP-binding-cassette-type exporter on the basis of sequence similarities. We demonstrate that YojI is capable of pumping out microcin molecules. Thus, one obvious explanation for the protective effect against microcin J25 is that YojI action keeps the intracellular concentration of the peptide below a toxic level. The outer membrane protein TolC in addition to YojI is required for export of microcin J25 out of the cell. Microcin J25 is thus the first known substrate for YojI.
PLOS ONE | 2014
Conrado Adler; Natalia S. Corbalán; Daiana R. Peralta; María Fernanda Pomares; Ricardo E. de Cristóbal; Paula A. Vincent
Numerous bacteria have evolved different iron uptake systems with the ability to make use of their own and heterologous siderophores. However, there is growing evidence attributing alternative roles for siderophores that might explain the potential adaptive advantages of microorganisms having multiple siderophore systems. In this work, we show the requirement of the siderophore enterobactin for Escherichia coli colony development in minimal media. We observed that a strain impaired in enterobactin production (entE mutant) was unable to form colonies on M9 agar medium meanwhile its growth was normal on LB agar medium. Given that, neither iron nor citrate supplementation restored colony growth, the role of enterobactin as an iron uptake-facilitator would not explain its requirement for colony development. The absence of colony development was reverted either by addition of enterobactin, the reducing agent ascorbic acid or by incubating in anaerobic culture conditions with no additives. Then, we associated the enterobactin requirement for colony development with its ability to reduce oxidative stress, which we found to be higher in media where the colony development was impaired (M9) compared with media where the strain was able to form colonies (LB). Since oxyR and soxS mutants (two major stress response regulators) formed colonies in M9 agar medium, we hypothesize that enterobactin could be an important piece in the oxidative stress response repertoire, particularly required in the context of colony formation. In addition, we show that enterobactin has to be hydrolyzed after reaching the cell cytoplasm in order to enable colony development. By favoring iron release, hydrolysis of the enterobactin-iron complex, not only would assure covering iron needs, but would also provide the cell with a molecule with exposed hydroxyl groups (hydrolyzed enterobactin). This molecule would be able to scavenge radicals and therefore reduce oxidative stress.
Applied and Environmental Microbiology | 2009
María Fernanda Pomares; Raúl A. Salomón; Olga Pavlova; Konstantin Severinov; Ricardo N. Farías; Paula A. Vincent
ABSTRACT Microcin J25 (MccJ25) is a 21-residue ribosomally synthesized lariat peptide antibiotic. MccJ25 is active against such food-borne disease-causing pathogens as Salmonella spp., Shigella spp., and Escherichia coli, including E. coli O157:H7 and non-O157 strains. MccJ25 is highly resistant to digestion by proteolytic enzymes present in the stomach and intestinal contents. MccJ25 would therefore remain active in the gastrointestinal tract, affecting normal intestinal microbiota, and this limits the potential use of MccJ25 as a food preservative. In the present paper, we describe a chymotrypsin-susceptible MccJ25 derivative with a mutation of Gly12 to Tyr that retained almost full antibiotic activity and efficiently inhibited the growth of pathogenic Salmonella enterica serovar Newport and Escherichia coli O157:H7 in skim milk and egg yolk. However, unlike the wild-type MccJ25, the MccJ25(G12Y) variant was inactivated by digestive enzymes both in vitro and in vivo. To our knowledge, our results represent the first example of a rational modification of a microcin aimed at increasing its potential use in food preservation.
Journal of Bacteriology | 2006
Ricardo E. de Cristóbal; José O. Solbiati; Ana M. Zenoff; Paula A. Vincent; Raúl A. Salomón; Julia Yuzenkova; Konstantin Severinov; Ricardo N. Farías
Escherichia coli microcin J25 (MccJ25) is a plasmid-encoded antibiotic peptide consisting of 21 L-amino acid residues (G1-G-A-G-H5-V-P-E-Y-F10-V-G-I-G-T15-P-I-S-F-Y20-G). E. coli RNA polymerase (RNAP) is the intracellular target of MccJ25. MccJ25 enters cells after binding to specific membrane transporters: FhuA in the outer membrane and SbmA in the inner membrane. Here, we studied MccJ25 mutants carrying a substitution of His5 by Lys, Arg, or Ala. The inhibitory effects on cellular growth and in vitro RNAP activity were determined for each mutant microcin. The results show that all mutants inhibited RNAP in vitro. However, the mutants were defective in their ability to inhibit cellular growth. Experiments in which the FhuA protein was bypassed showed that substitutions of MccJ25 His5 affected the SbmA-dependent transport. Our results thus suggest that MccJ25 His5 located in the lariat ring is involved, directly or indirectly, in specific interaction with SbmA and is not required for MccJ25 inhibition of RNAP.
Journal of Bacteriology | 2013
Natalia S. Corbalán; Giulia Runti; Conrado Adler; Sonia Covaceuszach; Robert C. Ford; Doriano Lamba; Konstantinos Beis; Marco Scocchi; Paula A. Vincent
SbmA protein has been proposed as a dimeric secondary transporter. The protein is involved in the transport of microcins B17 and J25, bleomycin, proline-rich antimicrobial peptides, antisense peptide phosphorodiamidate morpholino oligomers, and peptide nucleic acids into the Escherichia coli cytoplasm. The sbmA homologue is found in a variety of bacteria, though the physiological role of the protein is hitherto unknown. In this work, we carried out a functional and structural analysis to determine which amino acids are critical for the transport properties of SbmA. We created a set of 15 site-directed sbmA mutants in which single conserved amino acids were replaced by glycine residues. Our work demonstrated that strains carrying the site-directed mutants V102G, F219G, and E276G had a null phenotype for SbmA transport functions. In contrast, strains carrying the single point mutants W19G, W53G, F60G, S69G, N155G, R190, L233G, A344G, T255G, N308G, and R385G showed transport capacities indistinguishable from those of strains harboring a wild-type sbmA. The strain carrying the Y116G mutant exhibited mixed phenotypic characteristics. We also demonstrated that those sbmA mutants with severely impaired transport capacity showed a dominant negative phenotype. Electron microscopy data and in silico three-dimensional (3D) homology modeling support the idea that SbmA forms a homodimeric complex, closely resembling the membrane-spanning region of the ATP-binding cassette transporter family. Direct mapping of the sbmA single point mutants on the protein surface allowed us to explain the observed phenotypic differences in transport ability.
Journal of Bacteriology | 2008
Ricardo E. de Cristóbal; Paula A. Vincent; Raúl A. Salomón
Previously, we demonstrated that Escherichia coli tolC mutations reduce the high-level resistance to tetracycline afforded by the transposon Tn10-encoded TetA pump from resistance at 200 microg/ml to resistance at 40 microg/ml. In this study, we found that the addition of an sbmA mutation to a tolC::Tn10 mutant exacerbates this phenotype: the double mutant did not form colonies, even in the presence of tetracycline at a concentration as low as 5 microg/ml. Inactivation of sbmA alone partially inhibited high-level tetracycline resistance, from resistance at 200 microg/ml to resistance at 120 microg/ml. There thus appears to be an additive effect of the mutations, resulting in almost complete suppression of the phenotypic expression of Tn10 tetracycline resistance.
Fems Microbiology Letters | 2009
Miriam C. Chalón; Augusto Bellomio; José O. Solbiati; Roberto D. Morero; Ricardo N. Farías; Paula A. Vincent
Escherichia coli microcin J25 (MccJ25) is a lasso-peptide antibiotic comprising 21 L-amino acid residues (G(1)-G-A-G-H(5)-V-P-E-Y-F(10)-V-G-I-G-T(15)-P-I-S-F-Y(20)-G). MccJ25 has two independent substrates: RNA-polymerase (RNAP) and the membrane respiratory chain. The latter is mediated by oxygen consumption inhibition together with an increase of superoxide production. In the present paper, the antibiotic MccJ25 was engineered by substituting Tyr(9) or Tyr(20) with phenylalanine. Both mutants were well transported into the cells and remained active on RNAP. Only the Y9F mutant lost the ability to overproduce superoxide and inhibit oxygen consumption. The last results confirm that the Tyr(9), and not Tyr(20), is involved in the MccJ25 action on the respiratory chain target.