Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalie K. Goto is active.

Publication


Featured researches published by Natalie K. Goto.


Current Opinion in Structural Biology | 2000

New developments in isotope labeling strategies for protein solution NMR spectroscopy.

Natalie K. Goto; Lewis E. Kay

The development of novel isotope labeling strategies for proteins has facilitated the study of the structure and dynamics of these molecules. In addition, the recent emergence of alternative methods of bacterial expression for obtaining isotopically labeled proteins permits the study of new classes of important proteins by solution NMR methods.


Journal of Biomolecular NMR | 1998

An HNCO-based Pulse Scheme for the Measurement of 13Cα-1Hα One-bond Dipolar couplings in 15N, 13C Labeled Proteins

Daiwen Yang; Joel R. Tolman; Natalie K. Goto; Lewis E. Kay

A triple resonance pulse scheme is presented for recording 13Cα-1Hα one-bond dipolar couplings in 15N, 13C labeled proteins. HNCO correlation maps are generated where the carbonyl chemical shift is modulated by the 13Cα-1Hα coupling, with the two doublet components separated into individual data sets. The experiment makes use of recently described methodology whereby the protein of interest is dissolved in a dilute solution of bicelles which orient above a critical temperature, thus permitting measurement of significant couplings (Tjandra and Bax, 1997a). An application to the protein ubiquitin is described.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Appropriation of the MinD protein-interaction motif by the dimeric interface of the bacterial cell division regulator MinE

Houman Ghasriani; Thierry Ducat; Chris T. Hart; Fatima Hafizi; Nina Chang; Ali Al-Baldawi; Saud H. Ayed; Patrik Lundström; Jo-Anne R. Dillon; Natalie K. Goto

MinE is required for the dynamic oscillation of Min proteins that restricts formation of the cytokinetic septum to the midpoint of the cell in gram negative bacteria. Critical for this oscillation is MinD-binding by MinE to stimulate MinD ATP hydrolysis, a function that had been assigned to the first ∼30 residues in MinE. Previous models based on the structure of an autonomously folded dimeric C-terminal fragment suggested that the N-terminal domain is freely accessible for interactions with MinD. We report here the solution NMR structure of the full-length MinE dimer from Neisseria gonorrhoeae, with two parts of the N-terminal domain forming an integral part of the dimerization interface. Unexpectedly, solvent accessibility is highly restricted for residues that were previously hypothesized to directly interact with MinD. To delineate the true MinD-binding region, in vitro assays for MinE-stimulated MinD activity were performed. The relative MinD-binding affinities obtained for full-length and N-terminal peptides from MinE demonstrated that residues that are buried in the dimeric interface nonetheless participate in direct interactions with MinD. According to results from NMR spin relaxation experiments, access to these buried residues may be facilitated by the presence of conformational exchange. We suggest that this concealment of MinD-binding residues by the MinE dimeric interface provides a mechanism for prevention of nonspecific interactions, particularly with the lipid membrane, to allow the free diffusion of MinE that is critical for Min protein oscillation.


Biochemistry | 2012

Activity-Based Protein Profiling of the Escherichia coli GlpG Rhomboid Protein Delineates the Catalytic Core

Allison R. Sherratt; David R. Blais; Houman Ghasriani; John Paul Pezacki; Natalie K. Goto

Rhomboid proteins comprise the largest class of intramembrane protease known, being conserved from bacteria to humans. The functional status of these proteases is typically assessed through direct or indirect detection of peptide cleavage products. Although these assays can report on the ability of a rhomboid to catalyze peptide bond cleavage, differences in measured hydrolysis rates can reflect changes in the structure and activity of catalytic residues, as well as the ability of the substrate to access the active site. Here we show that a highly reactive and sterically unencumbered fluorophosphonate activity-based protein profiling probe can be used to report on the catalytic integrity of active site residues in the Escherichia coli GlpG protein. We used results obtained with this probe on GlpG in proteomic samples, in combination with a conventional assay of proteolytic function on purified samples, to identify residues that are located on the cytoplasmic side of the lipid bilayer that are required for maximal proteolytic activity. Regions tested include the 90-residue aqueous-exposed N-terminus that encompasses a globular structure that we have determined by solution nuclear magnetic resonance, along with residues on the cytoplasmic side of the transmembrane domain core. While in most cases mutation or elimination of these residues did not significantly alter the catalytic status of the GlpG active site, the lipid-facing residue Arg227 was found to be important for maintaining a catalytically competent active site. In addition, we found a functionally critical region outside the transmembrane domain (TMD) core that is required for maximal protease activity. This region encompasses an additional 8-10 residues on the N-terminal side of the TMD core that precedes the first transmembrane segment and was not previously known to play a role in rhomboid function. These findings highlight the utility of the activity-based protein profiling approach for the characterization of rhomboid function.


Topics in Current Chemistry | 2011

Contemporary Methods in Structure Determination of Membrane Proteins by Solution NMR

Tabussom Qureshi; Natalie K. Goto

Integral membrane proteins are vital to life, being responsible for information and material exchange between a cell and its environment. Although high-resolution structural information is needed to understand how these functions are achieved, membrane proteins remain an under-represented subset of the protein structure databank. Solution NMR is increasingly demonstrating its ability to help address this knowledge shortfall, with the development of a diverse array of techniques to counter the challenges presented by membrane proteins. Here we document the advances that are helping to define solution NMR as an effective tool for membrane protein structure determination. Developments introduced over the last decade in the production of isotope-labeled samples, reconstitution of these samples into the growing selection of NMR-compatible membrane-mimetic systems, and the approaches used for the acquisition and application of structural restraints from these complexes are reviewed.


Biochimica et Biophysica Acta | 2009

Insights into the effect of detergents on the full-length rhomboid protease from Pseudomonas aeruginosa and its cytosolic domain.

Allison R. Sherratt; Michael V. Braganza; Elizabeth Nguyen; Thierry Ducat; Natalie K. Goto

Rhomboids comprise a family of intramembrane serine proteases that catalyze the cleavage of transmembrane segments within the lipid membrane to achieve a wide range of biological functions. A subset of bacterial rhomboids possesses an N-terminal cytosolic domain that appears to enhance proteolytic activity via an unknown mechanism. Structural analysis of a full-length rhomboid would provide new insights into this mechanism, an objective that solution NMR has the potential to realize. For this purpose we purified the rhomboid from Pseudomonas aeruginosa in a range of membrane-mimetic media, evaluated its functional status in vitro and investigated the NMR spectroscopic properties of these samples. In general, NMR signals could only be observed from the cytosolic domain, and only in detergents that did not support rhomboid activity. In contrast, media that supported rhomboid function did not show these resonances, suggesting an association between the cytosolic domain and the protein-detergent complex. Investigations into the ability of the isolated cytosolic domain to bind detergent micelles revealed a denaturing interaction, whereas no interaction occurred with micelles that supported rhomboid activity. The cytosolic domain also did not show any tendency to interact with lipid bilayers found in small bicelles or vesicles made from Escherichia coli phospholipid extracts. Based on these data we propose that the cytosolic domain does not interact with the lipid membrane, but instead enhances rhomboid activity through interactions with some other part of the rhomboid, such as the catalytic core domain.


ChemBioChem | 2014

A New Chemical Probe for Phosphatidylinositol Kinase Activity

Allison R. Sherratt; Neda Nasheri; Craig S. McKay; Shifawn O'Hara; Ashley Hunt; Zhibin Ning; Daniel Figeys; Natalie K. Goto; John Paul Pezacki

Phosphatidylinositol kinases (PIKs) are key enzymatic regulators of membrane phospholipids and membrane environments that control many aspects of cellular function, from signal transduction to secretion, through the Golgi apparatus. Here, we have developed a photoreactive “clickable” probe, PIK‐BPyne, to report the activity of PIKs. We investigated the selectivity and efficiency of the probe to both inhibit and label PIKs, and we compared PIK‐BPyne to a wortmannin activity‐based probe also known to target PIKs. We found that PIK‐BPyne can act as an effective in situ activity‐based probe, and for the first time, report changes in PI4K‐IIIβ activity induced by the hepatitis C virus. These results establish the utility of PIK‐BPyne for activity‐based protein profiling studies of PIK function in native biological systems.


Nature Chemical Biology | 2017

Rational design of proteins that exchange on functional timescales

James A. Davey; Adam M. Damry; Natalie K. Goto; Roberto A. Chica

Proteins are intrinsically dynamic molecules that can exchange between multiple conformational states, enabling them to carry out complex molecular processes with extreme precision and efficiency. Attempts to design novel proteins with tailored functions have mostly failed to yield efficiencies matching those found in nature because standard methods do not allow the design of exchange between necessary conformational states on a functionally relevant timescale. Here we developed a broadly applicable computational method to engineer protein dynamics that we term meta-multistate design. We used this methodology to design spontaneous exchange between two novel conformations introduced into the global fold of Streptococcal protein G domain β1. The designed proteins, named DANCERs, for dynamic and native conformational exchangers, are stably folded and switch between predicted conformational states on the millisecond timescale. The successful introduction of defined dynamics on functional timescales opens the door to new applications requiring a protein to spontaneously access multiple conformational states.


Protein Science | 2015

Influence of hydrophobic mismatch on the catalytic activity of Escherichia coli GlpG rhomboid protease

Alexander C. Y. Foo; Brandon G. R. Harvey; Jeff Metz; Natalie K. Goto

Rhomboids comprise a broad family of intramembrane serine proteases that are found in a wide range of organisms and participate in a diverse array of biological processes. High‐resolution structures of the catalytic transmembrane domain of the Escherichia coli GlpG rhomboid have provided numerous insights that help explain how hydrolytic cleavage can be achieved below the membrane surface. Key to this are observations that GlpG hydrophobic domain dimensions may not be sufficient to completely span the native lipid bilayer. This formed the basis for a model where hydrophobic mismatch Induces thinning of the local membrane environment to promote access to transmembrane substrates. However, hydrophobic mismatch also has the potential to alter the functional properties of the rhomboid, a possibility we explore in the current work. For this purpose, we purified the catalytic transmembrane domain of GlpG into phosphocholine or maltoside detergent micelles of varying alkyl chain lengths, and assessed proteolytic function with a model water‐soluble substrate. Catalytic turnover numbers were found to depend on detergent alkyl chain length, with saturated chains containing 10–12 carbon atoms supporting maximal activity. Similar results were obtained in phospholipid bicelles, with no proteolytic activity being detected in longer‐chain lipids. Although differences in thermal stability and GlpG oligomerization could not explain these activity differences, circular dichroism spectra suggest that mismatch gives rise to a small change in structure. Overall, these results demonstrate that hydrophobic mismatch can exert an inhibitory effect on rhomboid activity, with the potential for changes in local membrane environment to regulate activity in vivo.


Structure | 2015

Prediction of Stable Globular Proteins Using Negative Design with Non-native Backbone Ensembles

James A. Davey; Adam M. Damry; Christian K. Euler; Natalie K. Goto; Roberto A. Chica

Accurate predictions of protein stability have great potential to accelerate progress in computational protein design, yet the correlation of predicted and experimentally determined stabilities remains a significant challenge. To address this problem, we have developed a computational framework based on negative multistate design in which sequence energy is evaluated in the context of both native and non-native backbone ensembles. This framework was validated experimentally with the design of ten variants of streptococcal protein G domain β1 that retained the wild-type fold, and showed a very strong correlation between predicted and experimental stabilities (R(2) = 0.86). When applied to four different proteins spanning a range of fold types, similarly strong correlations were also obtained. Overall, the enhanced prediction accuracies afforded by this method pave the way for new strategies to facilitate the generation of proteins with novel functions by computational protein design.

Collaboration


Dive into the Natalie K. Goto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge