Natalie N. Bauer
University of South Alabama
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natalie N. Bauer.
Pulmonary circulation | 2013
Leslie A. Hargett; Natalie N. Bauer
Microparticles are submicron vesicles shed from a variety of cells. Peter Wolf first identified microparticles in the midst of ongoing blood coagulation research in 1967 as a product of platelets. He termed them platelet dust. Although initially thought to be useless cellular trash, decades of research focused on the tiny vesicles have defined their roles as participators in coagulation, cellular signaling, vascular injury, and homeostasis. The purpose of this review is to highlight the science leading up to the discovery of microparticles, feature discoveries made by key contributors to the field of microparticle research, and discuss their positive and negative impact on the pulmonary circulation.
American Journal of Respiratory and Critical Care Medicine | 2010
Serpil C. Erzurum; Sharon Rounds; Troy Stevens; Micheala A. Aldred; Jason M. Aliotta; Stephen L. Archer; Kewal Asosingh; Robert S. Balaban; Natalie N. Bauer; Jahar Bhattacharya; Harm J. Bogaard; Gaurav Choudhary; Gerald W. Dorn; Raed A. Dweik; Karen A. Fagan; Michael B. Fallon; Toren Finkel; Mark W. Geraci; Mark T. Gladwin; Paul M. Hassoun; Marc Humbert; Naftali Kaminski; Steven M. Kawut; Joseph Loscalzo; Donald M. McDonald; Ivan F. McMurtry; John H. Newman; Mark R. Nicolls; Marlene Rabinovitch; J.A. Shizuru
The Division of Lung Diseases of the National Heart, Lung, and Blood Institute, with the Office of Rare Diseases Research, held a workshop to identify priority areas and strategic goals to enhance and accelerate research that will result in improved understanding of the lung vasculature, translational research needs, and ultimately the care of patients with pulmonary vascular diseases. Multidisciplinary experts with diverse experience in laboratory, translational, and clinical studies identified seven priority areas and discussed limitations in our current knowledge, technologies, and approaches. The focus for future research efforts include the following: (1) better characterizing vascular genotype-phenotype relationships and incorporating systems biology approaches when appropriate; (2) advancing our understanding of pulmonary vascular metabolic regulatory signaling in health and disease; (3) expanding our knowledge of the biologic relationships between the lung circulation and circulating elements, systemic vascular function, and right heart function and disease; (4) improving translational research for identifying disease-modifying therapies for the pulmonary hypertensive diseases; (5) establishing an appropriate and effective platform for advancing translational findings into clinical studies testing; and (6) developing the specific technologies and tools that will be enabling for these goals, such as question-guided imaging techniques and lung vascular investigator training programs. Recommendations from this workshop will be used within the Lung Vascular Biology and Disease Extramural Research Program for planning and strategic implementation purposes.
Molecular and Cellular Biology | 2006
Chrystelle V. Garat; Dana M. Fankell; Paul F. Erickson; Jane E.B. Reusch; Natalie N. Bauer; Ivan F. McMurtry; Dwight J. Klemm
ABSTRACT Cyclic AMP response element binding protein (CREB) content is diminished in smooth muscle cells (SMCs) in remodeled pulmonary arteries from animals with pulmonary hypertension and in the SMC layers of atherogenic systemic arteries and cardiomyocytes from hypertensive individuals. Loss of CREB can be induced in cultured SMCs by chronic exposure to hypoxia or platelet-derived growth factor BB (PDGF-BB). Here we investigated the signaling pathways and mechanisms by which PDGF elicits depletion of SMC CREB. Chronic PDGF treatment increased CREB ubiquitination in SMCs, while treatment of SMCs with the proteasome inhibitor lactacystin prevented decreases in CREB content. The nuclear export inhibitor leptomycin B also prevented depletion of SMC CREB alone or in combination with lactacystin. Subsequent studies showed that PDGF activated extracellular signal-regulated kinase, Jun N-terminal protein kinase, and phosphatidylinositol 3 (PI3)-kinase pathways in SMCs. Inhibition of these pathways blocked SMC proliferation in response to PDGF, but only inhibition of PI3-kinase or its effector, Akt, blocked PDGF-induced CREB loss. Finally, chimeric proteins containing enhanced cyan fluorescent protein linked to wild-type CREB or CREB molecules with mutations in several recognized phosphorylation sites were introduced into SMCs. PDGF treatment reduced the levels of each of these chimeric proteins except for one containing mutations in adjacent serine residues (serines 103 and 107), suggesting that CREB loss was dependent on CREB phosphorylation at these sites. We conclude that PDGF stimulates nuclear export and proteasomal degradation of CREB in SMCs via PI3-kinase/Akt signaling. These results indicate that in addition to direct phosphorylation, proteolysis and intracellular localization are key mechanisms regulating CREB content and activity in SMCs.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2011
Salina Gairhe; Natalie N. Bauer; Sarah A. Gebb; Ivan F. McMurtry
Myoendothelial gap junctions are involved in regulating systemic arterial smooth muscle cell phenotype and function, but their role in the regulation of pulmonary arterial smooth muscle cell (PASMC) phenotype is unknown. We therefore investigated in cocultured pulmonary arterial endothelial cells (PAECs) and PASMCs whether myoendothelial gap junctional signaling played a role in PAEC-dependent regulation of PASMC phenotype. Rat PAECs and PASMCs were cocultured on opposite sides of a porous Transwell membrane that permitted formation of heterotypic cell-cell contacts. Immunostaining showed expression of the gap junctional protein connexin 43 (Cx43) on projections extending into the membrane from both cell types. Dye transfer exhibited functional gap junctional communication from PAECs to PASMCs. PASMCs cocultured with PAECs had a more contractile-like phenotype (spindle shape and increased expression of the contractile proteins myosin heavy chain, H1-calponin, and α-smooth muscle cell-actin) than PASMCs cocultured with PASMCs or cocultured without direct contact with PAECs. Transforming growth factor (TGF)-β1 signaling was activated in PASMCs cocultured with PAECs, and the PASMC differentiation was inhibited by TGF-β type I receptor blockade. Inhibition of gap junctional communication pharmacologically or by knock down of Cx43 in PAECs blocked TGF-β signaling and PASMC differentiation. These results implicate myoendothelial gap junctions as a gateway for PAEC-derived signals required for maintaining TGF-β-dependent PASMC differentiation. This study identifies an alternative pathway to paracrine signaling to convey regulatory signals from PAECs to PASMCs and raises the possibility that dysregulation of this direct interaction is involved in the pathogenesis of hypertensive pulmonary vascular remodeling.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2012
Salina Gairhe; Natalie N. Bauer; Sarah A. Gebb; Ivan F. McMurtry
Myoendothelial gap junctional signaling mediates pulmonary arterial endothelial cell (PAEC)-induced activation of latent TGF-β and differentiation of cocultured pulmonary arterial smooth muscle cells (PASMCs), but the nature of the signal passing from PAECs to PASMCs through the gap junctions is unknown. Because PAECs but not PASMCs synthesize serotonin, and serotonin can pass through gap junctions, we hypothesized that the monoamine is the intercellular signal. We aimed to determine whether PAEC-derived serotonin mediates PAEC-induced myoendothelial gap junction-dependent activation of TGF-β signaling and differentiation of PASMCs. Rat PAECs and PASMCs were monocultured or cocultured with (touch) or without (no-touch) direct cell-cell contact. In all cases, tryptophan hydroxylase 1 (Tph1) transcripts were expressed predominantly in PAECs. Serotonin was detected by immunostaining in both PAECs and PASMCs in PAEC/PASMC touch coculture but was not found in PASMCs in either PAEC/PASMC no-touch coculture or in PASMC/PASMC touch coculture. Furthermore, inhibition of gap junctions but not of the serotonin transporter in PAEC/PASMC touch coculture prevented serotonin transfer from PAECs to PASMCs. Inhibition of serotonin synthesis pharmacologically or by small interfering RNAs to Tph1 in PAECs inhibited the PAEC-induced activation of TGF-β signaling and differentiation of PASMCs. We concluded that serotonin synthesized by PAECs is transferred through myoendothelial gap junctions into PASMCs, where it activates TGF-β signaling and induces a more differentiated phenotype. This finding suggests a novel role of gap junction-mediated intercellular serotonin signaling in regulation of PASMC phenotype.
Cell Biochemistry and Biophysics | 2002
Natalie N. Bauer; Troy Stevens
Store-operated calcium (SOC) entry is the most prominent mode of calcium entry in nonexcitable cells, although important questions remain regarding its mechanism(s) of activation and the molecular identity of SOC entry channels. Recent work using Drosophila melanogaster and mammalian cells suggest that myosin may play a central role in regulation of the open state of SOC entry channels. The most direct evidence for such a role for myosin motor function is in the Drosophila rhabdomere, where a myosin homolog appears to terminate channel signaling. Studies directly examining the contribution of myosin to mammalian SOC entry are lacking. However, several indirect lines of evidence support a role for myosin motor function in the control of calcium entry. Both inhibition of myosin light-chain kinase (the kinase responsible for myosin activation) and disruption of filamentous actin (the track for actomyosin motor function) reduces SOC entry and appear to prevent activation of a calcium-selective SOC entry current. Thus this review summarizes data—emphasizing recent evidence in mammalian systems—implicating myosin motor function in the control of SOC entry.
Pulmonary circulation | 2015
Leslie A. Hargett; Lauren J. Hartman; April K. Scruggs; Jared M. McLendon; April K. Haven; Natalie N. Bauer
A frequently used end point of clinical outcomes in patients with pulmonary arterial hypertension (PAH) is the 6-minute walk distance. Furthermore, some data suggest that mild to moderate exercise as an intervention in stable PAH is beneficial. Some of these questions have been recapitulated in the monocrotaline and hypoxia animal models of pulmonary hypertension. However, mild exercise and walk distance as end points have not been rigorously examined in the severe progressive Sugen 5416/hypoxia/normoxia (Su/Hx/Nx) animal model of PAH at each stage of worsening disease. Our hypothesis was that animals that were preselected as runners would have increased walk times and improved right ventricle/left ventricle plus septum (RV/LV+S) ratios, echocardiography, and histology compared with nonexercised Su/Hx/Nx animals. We examined four groups of rats: Su/Hx/Nx sedentary, Su/Hx/Nx exercised, control sedentary, and control exercised. Echocardiography was performed at 5, 8, and 13 weeks to assess right ventricular inner diameter in diastole and left ventricular eccentricity index. We found no difference between exercised and sedentary Su/Hx/Nx rats, and both were worsened compared with controls. Rats were euthanized at 13 weeks, and we found that neither RV/LV+S nor the occurrence of occlusive lesions were influenced by exercise. Most interesting, however, was that despite progressive PAH development, exercised Su/Hx/Nx rats showed no decrease in time or distance for treadmill exercise. In all, our data suggest that, despite severe PAH development, Su/Hx/Nx rats retain the same treadmill exercise capacity as control animals.
PLOS ONE | 2015
April K. Scruggs; Eugene A. Cioffi; Donna L. Cioffi; Judy A. C. King; Natalie N. Bauer
Microparticles (MPs) are released constitutively and from activated cells. MPs play significant roles in vascular homeostasis, injury, and as biomarkers. The unique glycocalyx on the membrane of cells has frequently been exploited to identify specific cell types, however the glycocalyx of the MPs has yet to be defined. Thus, we sought to determine whether MPs, released both constitutively and during injury, from vascular cells have a glycocalyx matching those of the parental cell type to provide information on MP origin. For these studies we used rat pulmonary microvascular and artery endothelium, pulmonary smooth muscle, and aortic endothelial cells. MPs were collected from healthy or cigarette smoke injured cells and analyzed with a panel of lectins for specific glycocalyx linkages. Intriguingly, we determined that the MPs released either constitutively or stimulated by CSE injury did not express the same glycocalyx of the parent cells. Further, the glycocalyx was not unique to any of the specific cell types studied. These data suggest that MPs from both normal and healthy vascular cells do not share the parental cell glycocalyx makeup.
Respiratory Research | 2016
Leslie A. Blair; April K. Haven; Natalie N. Bauer
BackgroundMicroparticles (MPs) stimulate inflammatory adhesion molecule expression in systemic vascular diseases, however it is unknown whether circulating MPs stimulate localized ICAM-1 expression in the heterogeneically distinct pulmonary endothelium during pulmonary arterial hypertension (PAH). Pulmonary vascular lesions with infiltrating inflammatory cells in PAH form in the pulmonary arteries and arterioles, but not the microcirculation. Therefore, we sought to determine whether circulating MPs from PAH stimulate pulmonary artery endothelial cell-selective ICAM-1 expression.ResultsPulmonary artery endothelial cells (PAECs) were exposed to MPs isolated from the circulation of a rat model of severe PAH. During late-stage (8-weeks) PAH, but not early-stage (3-weeks), an increase in ICAM-1 was observed. To determine whether PAH MP-induced ICAM-1 was selective for a specific segment of the pulmonary circulation, pulmonary microvascular endothelial cells (PMVECs) were exposed to late-stage PAH MPs and no increase in ICAM-1 was detected. A select population of circulating MPs, the late-stage endoglin + MPs, were used to assess their ability to stimulate ICAM-1 and it was determined that the endoglin + MPs were sufficient to promote ICAM-1 increases in the whole cell, but not surface only expression.ConclusionsLate-stage, but not early-stage, MPs in a model of severe PAH selectively induce ICAM-1 in pulmonary artery endothelium, but not pulmonary microcirculation. Further, the selected endoglin + PAH MPs, but not endoglin + MPs from control, are sufficient to promote whole cell ICAM-1 in PAECs. The implications of this work are that MPs in late-stage PAH are capable of inducing ICAM-1 expression selectively in the pulmonary artery. ICAM-1 likely plays a significant role in the observed inflammatory cell recruitment, specifically to vascular lesions in the pulmonary artery and not the pulmonary microcirculation.
Experimental Cell Research | 2007
Natalie N. Bauer; Yih Wen Chen; Rajeev S. Samant; Lalita A. Shevde; Øystein Fodstad