Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natarajan V. Bhanu is active.

Publication


Featured researches published by Natarajan V. Bhanu.


Molecular & Cellular Proteomics | 2015

Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH) Analysis for Characterization and Quantification of Histone Post-translational Modifications

Simone Sidoli; Shu Lin; Lei Xiong; Natarajan V. Bhanu; Kelly R. Karch; Eric Johansen; Christie L. Hunter; Sahana Mollah; Benjamin A. Garcia

Histone post-translational modifications (PTMs) have a fundamental function in chromatin biology, as they model chromatin structure and recruit enzymes involved in gene regulation, DNA repair, and chromosome condensation. High throughput characterization of histone PTMs is mostly performed by using nano-liquid chromatography coupled to mass spectrometry. However, limitations in speed and stochastic sampling of data dependent acquisition methods in MS lead to incomplete discrimination of isobaric peptides and loss of low abundant species. In this work, we analyzed histone PTMs with a data-independent acquisition method, namely SWATH™ analysis. This approach allows for MS/MS-based quantification of all analytes without upfront assay development and no issues of biased and incomplete sampling. We purified histone proteins from human embryonic stem cells and mouse trophoblast stem cells before and after differentiation, and prepared them for MS analysis using the propionic anhydride protocol. Results on histone H3 peptides verified that sequential window acquisition of all theoretical mass spectra could accurately quantify peptides (<9% average coefficient of variation, CV) over four orders of magnitude, and we could discriminate isobaric and co-eluting peptides (e.g. H3K18ac and H3K23ac) using MS/MS-based quantification. This method provided high sensitivity and precision, supported by the fact that we could find significant differences for remarkably low abundance PTMs such as H3K9me2S10ph (relative abundance <0.02%). We performed relative quantification for few sample peptides using different fragment ions and observed high consistency (CV <15%) between the fragments. This indicated that different fragment ions can be used independently to achieve the same peptide relative quantification. Taken together, sequential window acquisition of all theoretical mass spectra proved to be an easy-to-use MS acquisition method to perform high quality MS/MS-based quantification of histone-modified peptides.


Molecular & Cellular Proteomics | 2015

EpiProfile Quantifies Histone Peptides With Modifications by Extracting Retention Time and Intensity in High-resolution Mass Spectra

Zuo-Fei Yuan; Shu Lin; Rosalynn C. Molden; Xing-Jun Cao; Natarajan V. Bhanu; Xiaoshi Wang; Simone Sidoli; Shichong Liu; Benjamin A. Garcia

Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples.


Journal of Visualized Experiments | 2016

Complete Workflow for Analysis of Histone Post-translational Modifications Using Bottom-up Mass Spectrometry: From Histone Extraction to Data Analysis.

Simone Sidoli; Natarajan V. Bhanu; Kelly R. Karch; Xiaoshi Wang; Benjamin A. Garcia

Nucleosomes are the smallest structural unit of chromatin, composed of 147 base pairs of DNA wrapped around an octamer of histone proteins. Histone function is mediated by extensive post-translational modification by a myriad of nuclear proteins. These modifications are critical for nuclear integrity as they regulate chromatin structure and recruit enzymes involved in gene regulation, DNA repair and chromosome condensation. Even though a large part of the scientific community adopts antibody-based techniques to characterize histone PTM abundance, these approaches are low throughput and biased against hypermodified proteins, as the epitope might be obstructed by nearby modifications. This protocol describes the use of nano liquid chromatography (nLC) and mass spectrometry (MS) for accurate quantification of histone modifications. This method is designed to characterize a large variety of histone PTMs and the relative abundance of several histone variants within single analyses. In this protocol, histones are derivatized with propionic anhydride followed by digestion with trypsin to generate peptides of 5 - 20 aa in length. After digestion, the newly exposed N-termini of the histone peptides are derivatized to improve chromatographic retention during nLC-MS. This method allows for the relative quantification of histone PTMs spanning four orders of magnitude.


Medical Hypotheses | 2016

Folate deficiency affects histone methylation

Benjamin A. Garcia; Zigmund Luka; Lioudmila V. Loukachevitch; Natarajan V. Bhanu; Conrad Wagner

Formaldehyde is extremely toxic reacting with proteins to crosslinks peptide chains. Formaldehyde is a metabolic product in many enzymatic reactions and the question of how these enzymes are protected from the formaldehyde that is generated has largely remained unanswered. Early experiments from our laboratory showed that two liver mitochondrial enzymes, dimethylglycine dehydrogenase (DMGDH) and sarcosine dehydrogenase (SDH) catalyze oxidative demethylation reactions (sarcosine is a common name for monomethylglycine). The enzymatic products of these enzymes were the demethylated substrates and formaldehyde, produced from the removed methyl group. Both DMGDH and SDH contain FAD and both have tightly bound tetrahydrofolate (THF), a folate coenzyme. THF binds reversibly with formaldehyde to form 5,10-methylene-THF. At that time we showed that purified DMGDH, with tightly bound THF, reacted with formaldehyde generated during the reaction to form 5,10-methylene-THF. This effectively scavenged the formaldehyde to protect the enzyme. Recently, post-translational modifications on histone tails have been shown to be responsible for epigenetic regulation of gene expression. One of these modifications is methylation of lysine residues. The first enzyme discovered to accomplish demethylation of these modified histones was histone lysine demethylase (LSD1). LSD1 specifically removes methyl groups from di- and mono-methylated lysines at position 4 of histone 3. This enzyme contained tightly bound FAD and the products of the reaction were the demethylated lysine residue and formaldehyde. The mechanism of LSD1 demethylation is analogous to the mechanism previously postulated for DMGDH, i.e. oxidation of the N-methyl bond to the methylene imine followed by hydrolysis to generate formaldehyde. This suggested that THF might also be involved in the LSD1 reaction to scavenge the formaldehyde produced. Our hypotheses are that THF is bound to native LSD1 by analogy to DMGDH and SDH and that the bound THF serves to protect the FAD class of histone demethylases from the destructive effects of formaldehyde generation by formation of 5,10-methylene-THF. We present pilot data showing that decreased folate in livers as a result of dietary folate deficiency is associated with increased levels of methylated lysine 4 of histone 3. This can be a result of decreased LSD1 activity resulting from the decreased folate available to scavenge the formaldehyde produced at the active site caused by the folate deficiency. Because LSD1 can regulate gene expression this suggests that folate may play a more important role than simply serving as a carrier of one-carbon units and be a factor in other diseases associated with low folate.


BMC Genomics | 2016

Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells

Michelle Gonzales-Cope; Simone Sidoli; Natarajan V. Bhanu; Kyoung-Jae Won; Benjamin A. Garcia

BackgroundPluripotent cells can be differentiated into many different cell types in vitro. Successful differentiation is guided in large part by epigenetic reprogramming and regulation of critical gene expression patterns. Recent genome-wide studies have identified the distribution of different histone-post-translational modifications (PTMs) in various conditions and during cellular differentiation. However, our understanding of the abundance of histone PTMs and their regulatory mechanisms still remain unknown.ResultsHere, we present a quantitative and comprehensive study of the abundance levels of histone PTMs during the differentiation of mouse embryonic stem cells (ESCs) using mass spectrometry (MS). We observed dynamic changes of histone PTMs including increased H3K9 methylation levels in agreement with previously reported results. More importantly, we found a global decrease of multiply acetylated histone H4 peptides. Brd4 targets acetylated H4 with a strong affinity to multiply modified H4 acetylation sites. We observed that the protein levels of Brd4 decreased upon differentiation together with global histone H4 acetylation. Inhibition of Brd4:histone H4 interaction by the BET domain inhibitor (+)-JQ1 in ESCs results in enhanced differentiation to the endodermal lineage, by disrupting the protein abundance dynamics. Genome-wide ChIP-seq mapping showed that Brd4 and H4 acetylation are co-occupied in the genome, upstream of core pluripotency genes such as Oct4 and Nanog in ESCs and lineage-specific genes in embryoid bodies (EBs).ConclusionsTogether, our data demonstrate the fundamental role of Brd4 in monitoring cell differentiation through its interaction with acetylated histone marks and disruption of Brd4 may cause aberrant differentiation.


Epigenetics & Chromatin | 2015

Multi-faceted quantitative proteomics analysis of histone H2B isoforms and their modifications

Rosalynn C. Molden; Natarajan V. Bhanu; Gary LeRoy; Anna M. Arnaudo; Benjamin A. Garcia

BackgroundHistone isoforms and their post-translational modifications (PTMs) play an important role in the control of many chromatin-related processes including transcription and DNA damage. Variants of histones H2A and H3 have been studied in depth and have been found to have distinct functions. Although 13 somatic histone H2B isoforms have been identified by various biochemical and mass spectrometric (MS) approaches, the distinct roles of these isoforms within human cells are as yet unknown. Here, we have developed quantitative MS techniques to characterize isoform-specific H2B expression across the cell cycle, in differentiated myogenic cells, and in different cancer cell lines to illuminate potential functional roles.ResultsUsing the MS strategies that we developed, we identified differences in H2B isoform levels between different cancer cell types, suggesting cancer or tissue-specific H2B isoform regulation. In particular, we found large variations in the levels of isoforms H2B1B and H2B1M across the panel of cell lines. We also found that, while individual H2B isoforms do not differ in their acetylation levels, trends in the acetylation on all H2B isoforms correlated with acetylation on other histone family members in the cancer cell line panel. We also used the MS strategies to study H2B protein expression across the cell cycle and determined that H2B isoforms that are alternatively spliced to carry a polyadenylation signal rather than the standard histone downstream element are expressed independently of the cell cycle. However, the level of protein produced from the polyadenylated transcripts does not contribute significantly to the total pool of H2B isoforms translated across the cell cycle or in non-cycling myogenic cells.ConclusionsOur results show that H2B isoforms are expressed at varying levels in different cells, suggesting isoform-specific, and possibly cell-type-specific, H2B gene regulation. The bottom-up mass spectrometry technique we developed for H2B quantification is compatible with the current standard histone H3 and H4 bottom-up ‘one-pot’ analysis platform so that H2B isoforms and their modifications can be studied in future experiments at the same time as histone H3 and H4 modifications. Therefore, we have expanded the histone landscape that can be interrogated in future experiments.


ACS Chemical Biology | 2017

Photoaffinity Ligand for the Inhalational Anesthetic Sevoflurane Allows Mechanistic Insight into Potassium Channel Modulation

Kellie A. Woll; Wesley Peng; Qiansheng Liang; Lianteng Zhi; Jack A. Jacobs; Lina Maciunas; Natarajan V. Bhanu; Benjamin A. Garcia; Manuel Covarrubias; Patrick J. Loll; William P. Dailey; Roderic G. Eckenhoff

Sevoflurane is a commonly used inhaled general anesthetic. Despite this, its mechanism of action remains largely elusive. Compared to other anesthetics, sevoflurane exhibits distinct functional activity. In particular, sevoflurane is a positive modulator of voltage-gated Shaker-related potassium channels (Kv1.x), which are key regulators of action potentials. Here, we report the synthesis and validation of azisevoflurane, a photoaffinity ligand for the direct identification of sevoflurane binding sites in the Kv1.2 channel. Azisevoflurane retains major sevoflurane protein binding interactions and pharmacological properties within in vivo models. Photoactivation of azisevoflurane induces adduction to amino acid residues that accurately reported sevoflurane protein binding sites in model proteins. Pharmacologically relevant concentrations of azisevoflurane analogously potentiated wild-type Kv1.2 and the established mutant Kv1.2 G329T. In wild-type Kv1.2 channels, azisevoflurane photolabeled Leu317 within the internal S4-S5 linker, a vital helix that couples the voltage sensor to the pore region. A residue lining the same binding cavity was photolabeled by azisevoflurane and protected by sevoflurane in the Kv1.2 G329T. Mutagenesis of Leu317 in WT Kv1.2 abolished sevoflurane voltage-dependent positive modulation. Azisevoflurane additionally photolabeled a second distinct site at Thr384 near the external selectivity filter in the Kv1.2 G329T mutant. The identified sevoflurane binding sites are located in critical regions involved in gating of Kv channels and related ion channels. Azisevoflurane has thus emerged as a new tool to discover inhaled anesthetic targets and binding sites and investigate contributions of these targets to general anesthesia.


Nature | 2017

Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription

Gloria Jih; Nahid Iglesias; Mark A. Currie; Natarajan V. Bhanu; Joao A. Paulo; Steven P. Gygi; Benjamin A. Garcia; Danesh Moazed

Heterochromatic DNA domains have important roles in the regulation of gene expression and maintenance of genome stability by silencing repetitive DNA elements and transposons. From fission yeast to mammals, heterochromatin assembly at DNA repeats involves the activity of small noncoding RNAs (sRNAs) associated with the RNA interference (RNAi) pathway. Typically, sRNAs, originating from long noncoding RNAs, guide Argonaute-containing effector complexes to complementary nascent RNAs to initiate histone H3 lysine 9 di- and trimethylation (H3K9me2 and H3K9me3, respectively) and the formation of heterochromatin. H3K9me is in turn required for the recruitment of RNAi to chromatin to promote the amplification of sRNA. Yet, how heterochromatin formation, which silences transcription, can proceed by a co-transcriptional mechanism that also promotes sRNA generation remains paradoxical. Here, using Clr4, the fission yeast Schizosaccharomyces pombe homologue of mammalian SUV39H H3K9 methyltransferases, we design active-site mutations that block H3K9me3, but allow H3K9me2 catalysis. We show that H3K9me2 defines a functionally distinct heterochromatin state that is sufficient for RNAi-dependent co-transcriptional gene silencing at pericentromeric DNA repeats. Unlike H3K9me3 domains, which are transcriptionally silent, H3K9me2 domains are transcriptionally active, contain modifications associated with euchromatic transcription, and couple RNAi-mediated transcript degradation to the establishment of H3K9me domains. The two H3K9me states recruit reader proteins with different efficiencies, explaining their different downstream silencing functions. Furthermore, the transition from H3K9me2 to H3K9me3 is required for RNAi-independent epigenetic inheritance of H3K9me domains. Our findings demonstrate that H3K9me2 and H3K9me3 define functionally distinct chromatin states and uncover a mechanism for the formation of transcriptionally permissive heterochromatin that is compatible with its broadly conserved role in sRNA-mediated genome defence.


Proteomics | 2015

Drawbacks in the use of unconventional hydrophobic anhydrides for histone derivatization in bottom-up proteomics PTM analysis

Simone Sidoli; Zuo-Fei Yuan; Shu Lin; Kelly R. Karch; Xiaoshi Wang; Natarajan V. Bhanu; Anna M. Arnaudo; Laura-Mae P Britton; Xing-Jun Cao; Michelle Gonzales-Cope; Yumiao Han; Shichong Liu; Rosalynn C. Molden; Samuel Wein; Leila Afjehi-Sadat; Benjamin A. Garcia

MS‐based proteomics has become the most utilized tool to characterize histone PTMs. Since histones are highly enriched in lysine and arginine residues, lysine derivatization has been developed to prevent the generation of short peptides (<6 residues) during trypsin digestion. One of the most adopted protocols applies propionic anhydride for derivatization. However, the propionyl group is not sufficiently hydrophobic to fully retain the shortest histone peptides in RP LC, and such procedure also hampers the discovery of natural propionylation events. In this work we tested 12 commercially available anhydrides, selected based on their safety and hydrophobicity. Performance was evaluated in terms of yield of the reaction, MS/MS fragmentation efficiency, and drift in retention time using the following samples: (i) a synthetic unmodified histone H3 tail, (ii) synthetic modified histone peptides, and (iii) a histone extract from cell lysate. Results highlighted that seven of the selected anhydrides increased peptide retention time as compared to propionic, and several anhydrides such as benzoic and valeric led to high MS/MS spectra quality. However, propionic anhydride derivatization still resulted, in our opinion, as the best protocol to achieve high MS sensitivity and even ionization efficiency among the analyzed peptides.


Epigenetics | 2013

Initial characterization of histone H3 serine 10 O-acetylation

Laura-Mae P Britton; Alyshia Newhart; Natarajan V. Bhanu; Rupa Sridharan; Michelle Gonzales-Cope; Kathrin Plath; Susan M. Janicki; Benjamin A. Garcia

In eukaryotic organisms, histone posttranslational modifications (PTMs) are indispensable for their role in maintaining cellular physiology, often through their mediation of chromatin-related processes such as transcription. Targeted investigations of this ever expanding network of chemical moieties continue to reveal genetic, biochemical, and cellular nuances of this complex landscape. In this study, we present our findings on a novel class of histone PTMs: Serine, Threonine, and Tyrosine O-acetylation. We have combined highly sensitive nano-LC-MS/MS experiments and immunodetection assays to identify and validate these unique marks found only on histone H3. Mass spectrometry experiments have determined that several of these O-acetylation marks are conserved in many species, ranging from yeast to human. Additionally, our investigations reveal that histone H3 serine 10 acetylation (H3S10ac) is potentially linked to cell cycle progression and cellular pluripotency. Here, we provide a glimpse into the functional implications of this H3-specific histone mark, which may be of high value for further studies of chromatin.

Collaboration


Dive into the Natarajan V. Bhanu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simone Sidoli

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kellie A. Woll

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zuo-Fei Yuan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Johayra Simithy

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kelly R. Karch

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shu Lin

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge