Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosalynn C. Molden is active.

Publication


Featured researches published by Rosalynn C. Molden.


Science | 2016

Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape

Chao Lu; Siddhant U. Jain; Dominik Hoelper; Denise Bechet; Rosalynn C. Molden; Leili Ran; Devan Murphy; Sriram Venneti; Meera Hameed; Bruce R. Pawel; Jay S. Wunder; Brendan C. Dickson; Stefan M. Lundgren; Krupa S. Jani; Nicolas De Jay; Simon Papillon-Cavanagh; Irene L. Andrulis; Sarah L. Sawyer; David Grynspan; Robert E. Turcotte; Javad Nadaf; Somayyeh Fahiminiyah; Tom W. Muir; Jacek Majewski; Craig B. Thompson; Ping Chi; Benjamin A. Garcia; C. David Allis; Nada Jabado; Peter W. Lewis

An oncohistone deranges inhibitory chromatin Missense mutations (that change one amino acid for another) in histone H3 can produce a so-called oncohistone and are found in a number of pediatric cancers. For example, the lysine-36–to-methionine (K36M) mutation is seen in almost all chondroblastomas. Lu et al. show that K36M mutant histones are oncogenic, and they inhibit the normal methylation of this same residue in wild-type H3 histones. The mutant histones also interfere with the normal development of bone-related cells and the deposition of inhibitory chromatin marks. Science, this issue p. 844 The lysine-36–to–methionine mutation in histone H3 is oncogenic and interferes with inhibitory chromatin marks. Several types of pediatric cancers reportedly contain high-frequency missense mutations in histone H3, yet the underlying oncogenic mechanism remains poorly characterized. Here we report that the H3 lysine 36–to–methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo. H3K36M mutant nucleosomes inhibit the enzymatic activities of several H3K36 methyltransferases. Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibits H3K36 methylation, is sufficient to phenocopy the H3K36M mutation. After the loss of H3K36 methylation, a genome-wide gain in H3K27 methylation leads to a redistribution of polycomb repressive complex 1 and de-repression of its target genes known to block mesenchymal differentiation. Our findings are mirrored in human undifferentiated sarcomas in which novel K36M/I mutations in H3.1 are identified.


Molecular & Cellular Proteomics | 2015

EpiProfile Quantifies Histone Peptides With Modifications by Extracting Retention Time and Intensity in High-resolution Mass Spectra

Zuo-Fei Yuan; Shu Lin; Rosalynn C. Molden; Xing-Jun Cao; Natarajan V. Bhanu; Xiaoshi Wang; Simone Sidoli; Shichong Liu; Benjamin A. Garcia

Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples.


Nature | 2016

A core viral protein binds host nucleosomes to sequester immune danger signals

Avgousti Dc; Herrmann C; Katarzyna Kulej; Pancholi Nj; Nikolina Sekulic; Petrescu J; Rosalynn C. Molden; Blumenthal D; Paris Aj; Reyes Ed; Ostapchuk P; Hearing P; Seeholzer Sh; Worthen Gs; Ben E. Black; Benjamin A. Garcia; Weitzman

Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signalling.


Critical Reviews in Biochemistry and Molecular Biology | 2011

Revealing histone variant induced changes via quantitative proteomics

Anna M. Arnaudo; Rosalynn C. Molden; Benjamin A. Garcia

Histone variants are isoforms of linker and core histone proteins that differ in their amino acid sequences. These variants have distinct genomic locations and posttranslational modifications, thus increasing the complexity of the chromatin architecture. Biological studies of histone variants indicate that they play a role in many processes including transcription, DNA damage response, and the cell cycle. The small differences in amino acid sequence and the diverse posttranslational modification states that exist between histone variants make traditional analysis using immunoassay methods challenging. In recent years, a number of mass spectrometric techniques have been developed to identify and quantify histones at the whole protein or peptide levels. In this review, we discuss the biology of histone variants and methods to characterize them using mass spectrometry-based proteomics.


Analytical Chemistry | 2014

Neutron-encoded mass signatures for quantitative top-down proteomics.

Timothy W. Rhoads; Christopher M. Rose; Derek J. Bailey; Nicholas M. Riley; Rosalynn C. Molden; Amelia J. Nestler; Anna E. Merrill; Lloyd M. Smith; Alexander S. Hebert; Michael S. Westphall; David J. Pagliarini; Benjamin A. Garcia; Joshua J. Coon

The ability to acquire highly accurate quantitative data is an increasingly important part of any proteomics experiment, whether shotgun or top-down approaches are used. We recently developed a quantitation strategy for peptides based on neutron encoding, or NeuCode SILAC, which uses closely spaced heavy isotope-labeled amino acids and high-resolution mass spectrometry to provide quantitative data. We reasoned that the strategy would also be applicable to intact proteins and could enable robust, multiplexed quantitation for top-down experiments. We used yeast lysate labeled with either 13C615N2-lysine or 2H8-lysine, isotopologues of lysine that are spaced 36 mDa apart. Proteins having such close spacing cannot be distinguished during a medium resolution scan, but upon acquiring a high-resolution scan, the two forms of the protein with each amino acid are resolved and the quantitative information revealed. An additional benefit NeuCode SILAC provides for top down is that the spacing of the isotope peaks indicates the number of lysines present in the protein, information that aids in identification. We used NeuCode SILAC to quantify several hundred isotope distributions, manually identify and quantify proteins from 1:1, 3:1, and 5:1 mixed ratios, and demonstrate MS2-based quantitation using ETD.


Journal of Proteome Research | 2014

Evaluation of Proteomic Search Engines for the Analysis of Histone Modifications

Zuo-Fei Yuan; Shu Lin; Rosalynn C. Molden; Benjamin A. Garcia

Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118.


Epigenetics & Chromatin | 2015

Multi-faceted quantitative proteomics analysis of histone H2B isoforms and their modifications

Rosalynn C. Molden; Natarajan V. Bhanu; Gary LeRoy; Anna M. Arnaudo; Benjamin A. Garcia

BackgroundHistone isoforms and their post-translational modifications (PTMs) play an important role in the control of many chromatin-related processes including transcription and DNA damage. Variants of histones H2A and H3 have been studied in depth and have been found to have distinct functions. Although 13 somatic histone H2B isoforms have been identified by various biochemical and mass spectrometric (MS) approaches, the distinct roles of these isoforms within human cells are as yet unknown. Here, we have developed quantitative MS techniques to characterize isoform-specific H2B expression across the cell cycle, in differentiated myogenic cells, and in different cancer cell lines to illuminate potential functional roles.ResultsUsing the MS strategies that we developed, we identified differences in H2B isoform levels between different cancer cell types, suggesting cancer or tissue-specific H2B isoform regulation. In particular, we found large variations in the levels of isoforms H2B1B and H2B1M across the panel of cell lines. We also found that, while individual H2B isoforms do not differ in their acetylation levels, trends in the acetylation on all H2B isoforms correlated with acetylation on other histone family members in the cancer cell line panel. We also used the MS strategies to study H2B protein expression across the cell cycle and determined that H2B isoforms that are alternatively spliced to carry a polyadenylation signal rather than the standard histone downstream element are expressed independently of the cell cycle. However, the level of protein produced from the polyadenylated transcripts does not contribute significantly to the total pool of H2B isoforms translated across the cell cycle or in non-cycling myogenic cells.ConclusionsOur results show that H2B isoforms are expressed at varying levels in different cells, suggesting isoform-specific, and possibly cell-type-specific, H2B gene regulation. The bottom-up mass spectrometry technique we developed for H2B quantification is compatible with the current standard histone H3 and H4 bottom-up ‘one-pot’ analysis platform so that H2B isoforms and their modifications can be studied in future experiments at the same time as histone H3 and H4 modifications. Therefore, we have expanded the histone landscape that can be interrogated in future experiments.


Proteomics | 2015

Drawbacks in the use of unconventional hydrophobic anhydrides for histone derivatization in bottom-up proteomics PTM analysis

Simone Sidoli; Zuo-Fei Yuan; Shu Lin; Kelly R. Karch; Xiaoshi Wang; Natarajan V. Bhanu; Anna M. Arnaudo; Laura-Mae P Britton; Xing-Jun Cao; Michelle Gonzales-Cope; Yumiao Han; Shichong Liu; Rosalynn C. Molden; Samuel Wein; Leila Afjehi-Sadat; Benjamin A. Garcia

MS‐based proteomics has become the most utilized tool to characterize histone PTMs. Since histones are highly enriched in lysine and arginine residues, lysine derivatization has been developed to prevent the generation of short peptides (<6 residues) during trypsin digestion. One of the most adopted protocols applies propionic anhydride for derivatization. However, the propionyl group is not sufficiently hydrophobic to fully retain the shortest histone peptides in RP LC, and such procedure also hampers the discovery of natural propionylation events. In this work we tested 12 commercially available anhydrides, selected based on their safety and hydrophobicity. Performance was evaluated in terms of yield of the reaction, MS/MS fragmentation efficiency, and drift in retention time using the following samples: (i) a synthetic unmodified histone H3 tail, (ii) synthetic modified histone peptides, and (iii) a histone extract from cell lysate. Results highlighted that seven of the selected anhydrides increased peptide retention time as compared to propionic, and several anhydrides such as benzoic and valeric led to high MS/MS spectra quality. However, propionic anhydride derivatization still resulted, in our opinion, as the best protocol to achieve high MS sensitivity and even ionization efficiency among the analyzed peptides.


Molecular & Cellular Proteomics | 2014

Stable Isotope Labeling of Phosphoproteins for Large-scale Phosphorylation Rate Determination

Rosalynn C. Molden; Jonathan Goya; Zia Khan; Benjamin A. Garcia

Signals that control responses to stimuli and cellular function are transmitted through the dynamic phosphorylation of thousands of proteins by protein kinases. Many techniques have been developed to study phosphorylation dynamics, including several mass spectrometry (MS)-based methods. Over the past few decades, substantial developments have been made in MS techniques for the large-scale identification of proteins and their post-translational modifications. Nevertheless, all of the current MS-based techniques for quantifying protein phosphorylation dynamics rely on the measurement of changes in peptide abundance levels, and many methods suffer from low confidence in phosphopeptide identification due to poor fragmentation. Here we have optimized an approach for the stable isotope labeling of amino acids by phosphate using [γ-18O4]ATP in nucleo to determine global site-specific phosphorylation rates. The advantages of this metabolic labeling technique are increased confidence in phosphorylated peptide identification, direct labeling of phosphorylation sites, measurement phosphorylation rates, and the identification of actively phosphorylated sites in a cell-like environment. In this study we calculated approximate rate constants for over 1,000 phosphorylation sites based on labeling progress curves. We measured a wide range of phosphorylation rate constants from 0.34 min−1 to 0.001 min−1. Finally, we applied stable isotope labeling of amino acids by phosphate to identify sites that have different phosphorylation kinetics during G1/S and M phase. We found that most sites had very similar phosphorylation rates under both conditions; however, a small subset of sites on proteins involved in the mitotic spindle were more actively phosphorylated during M phase, whereas proteins involved in DNA replication and transcription were more actively phosphorylated during G1/S phase. The data have been deposited to the ProteomeXchange with the identifier PXD000680.


Current protocols in protein science | 2014

Middle‐Down and Top‐Down Mass Spectrometric Analysis of Co‐occurring Histone Modifications

Rosalynn C. Molden; Benjamin A. Garcia

Histones are chromatin proteins that are highly modified with many different types of post‐translational modifications. These modifications act in concert to regulate a number of chromatin‐related processes. However, identification and quantification of co‐occurring histone post‐translational modifications is challenging because there are many potential combinations of modifications and because the commonly used strategy of fragmenting proteins using trypsin or an alternative protease prior to LC‐MS/MS analysis results in the loss of connectivity between modifications on different peptides. In this unit, mass spectrometric methods to analyze combinatorial histone modifications on histone tails (middle‐down mass spectrometry) and on intact histones (top‐down mass spectrometry) are described. Curr. Protoc. Protein Sci. 77:23.7.1‐23.7.28.

Collaboration


Dive into the Rosalynn C. Molden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zuo-Fei Yuan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Anna M. Arnaudo

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shu Lin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Shichong Liu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Simone Sidoli

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Xiaoshi Wang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Xing-Jun Cao

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Yumiao Han

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge