Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natasha Arora is active.

Publication


Featured researches published by Natasha Arora.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Effects of Pleistocene glaciations and rivers on the population structure of Bornean orangutans (Pongo pygmaeus)

Natasha Arora; Alexander Nater; Carel P. van Schaik; Erik P. Willems; Maria A. van Noordwijk; Benoit Goossens; Nadja V. Morf; Meredith L. Bastian; Cheryl D. Knott; Helen C. Morrogh-Bernard; Noko Kuze; Tomoko Kanamori; Joko Pamungkas; Dyah Perwitasari-Farajallah; Ernst J. Verschoor; K. Warren; Michael Krützen

Sundaland, a tropical hotspot of biodiversity comprising Borneo and Sumatra among other islands, the Malay Peninsula, and a shallow sea, has been subject to dramatic environmental processes. Thus, it presents an ideal opportunity to investigate the role of environmental mechanisms in shaping species distribution and diversity. We investigated the population structure and underlying mechanisms of an insular endemic, the Bornean orangutan (Pongo pygmaeus). Phylogenetic reconstructions based on mtDNA sequences from 211 wild orangutans covering the entire range of the species indicate an unexpectedly recent common ancestor of Bornean orangutans 176 ka (95% highest posterior density, 72–322 ka), pointing to a Pleistocene refugium. High mtDNA differentiation among populations and rare haplotype sharing is consistent with a pattern of strong female philopatry. This is corroborated by isolation by distance tests, which show a significant correlation between mtDNA divergence and distance and a strong effect of rivers as barriers for female movement. Both frequency-based and Bayesian clustering analyses using as many as 25 nuclear microsatellite loci revealed a significant separation among all populations, as well as a small degree of male-mediated gene flow. This study highlights the unique effects of environmental and biological features on the evolutionary history of Bornean orangutans, a highly endangered species particularly vulnerable to future climate and anthropogenic change as an insular endemic.


Molecular Biology and Evolution | 2011

Sex-Biased Dispersal and Volcanic Activities Shaped Phylogeographic Patterns of Extant Orangutans (genus: Pongo)

Alexander Nater; Pirmin Nietlisbach; Natasha Arora; Carel P. van Schaik; Maria A. van Noordwijk; Erik P. Willems; Ian Singleton; Serge A. Wich; Benoit Goossens; K. Warren; Ernst J. Verschoor; Dyah Perwitasari-Farajallah; Joko Pamungkas; Michael Krützen

The Southeast Asian Sunda archipelago harbors a rich biodiversity with a substantial proportion of endemic species. The evolutionary history of these species has been drastically influenced by environmental forces, such as fluctuating sea levels, climatic changes, and severe volcanic activities. Orangutans (genus: Pongo), the only Asian great apes, are well suited to study the relative impact of these forces due to their well-documented behavioral ecology, strict habitat requirements, and exceptionally slow life history. We investigated the phylogeographic patterns and evolutionary history of orangutans in the light of the complex geological and climatic history of the Sunda archipelago. Our study is based on the most extensive genetic sampling to date, covering the entire range of extant orangutan populations. Using data from three mitochondrial DNA (mtDNA) genes from 112 wild orangutans, we show that Sumatran orangutans, Pongo abelii, are paraphyletic with respect to Bornean orangutans (P. pygmaeus), the only other currently recognized species within this genus. The deepest split in the mtDNA phylogeny of orangutans occurs across the Toba caldera in northern Sumatra and, not as expected, between both islands. Until the recent past, the Toba region has experienced extensive volcanic activity, which has shaped the current phylogeographic patterns. Like their Bornean counterparts, Sumatran orangutans exhibit a strong, yet previously undocumented structuring into four geographical clusters. However, with 3.50 Ma, the Sumatran haplotypes have a much older coalescence than their Bornean counterparts (178 kya). In sharp contrast to the mtDNA data, 18 Y-chromosomal polymorphisms show a much more recent coalescence within Sumatra compared with Borneo. Moreover, the deep geographic structure evident in mtDNA is not reflected in the male population history, strongly suggesting male-biased dispersal. We conclude that volcanic activities have played an important role in the evolutionary history of orangutans and potentially of many other forest-dwelling Sundaland species. Furthermore, we demonstrate that a strong sex bias in dispersal can lead to conflicting patterns in uniparentally inherited markers even at a genus-wide scale, highlighting the need for a combined usage of maternally and paternally inherited marker systems in phylogenetic studies.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition

Peter Geon Kim; Colleen E. Albacker; Yi Fen Lu; Il Ho Jang; Yoowon Lim; Garrett C. Heffner; Natasha Arora; Teresa V. Bowman; Michelle I Lin; M. William Lensch; Alejandro De Los Angeles; Leonard I. Zon; Sabine Loewer; George Q. Daley

During development, the hematopoietic lineage transits through hemogenic endothelium, but the signaling pathways effecting this transition are incompletely characterized. Although the Hedgehog (Hh) pathway is hypothesized to play a role in patterning blood formation, early embryonic lethality of mice lacking Hh signaling precludes such analysis. To determine a role for Hh signaling in patterning of hemogenic endothelium, we assessed the effect of altered Hh signaling in differentiating mouse ES cells, cultured mouse embryos, and developing zebrafish embryos. In differentiating mouse ES cells and mouse yolk sac cultures, addition of Indian Hh ligand increased hematopoietic progenitors, whereas chemical inhibition of Hh signaling reduced hematopoietic progenitors without affecting primitive streak mesoderm formation. In the setting of Hh inhibition, induction of either Notch signaling or overexpression of Stem cell leukemia (Scl)/T-cell acute lymphocytic leukemia protein 1 rescued hemogenic vascular-endothelial cadherin+ cells and hematopoietic progenitor formation. Together, our results reveal that Scl overexpression is sufficient to rescue the developmental defects caused by blocking the Hh and Notch pathways, and inform our understanding of the embryonic endothelial-to-hematopoietic transition.


Journal of Heredity | 2013

Marked Population Structure and Recent Migration in the Critically Endangered Sumatran Orangutan (Pongo abelii)

Alexander Nater; Natasha Arora; Maja P. Greminger; Carel P. van Schaik; Ian Singleton; Serge A. Wich; Gabriella Fredriksson; Dyah Perwitasari-Farajallah; Joko Pamungkas; Michael Krützen

A multitude of factors influence how natural populations are genetically structured, including dispersal barriers, inhomogeneous habitats, and social organization. Such population subdivision is of special concern in endangered species, as it may lead to reduced adaptive potential and inbreeding in local subpopulations, thus increasing the risk of future extinctions. With only 6600 animals left in the wild, Sumatran orangutans (Pongo abelii) are among the most endangered, but also most enigmatic, great ape species. In order to infer the fine-scale population structure and connectivity of Sumatran orangutans, we analyzed the most comprehensive set of samples to date, including mitochondrial hyper-variable region I haplotypes for 123 individuals and genotypes of 27 autosomal microsatellite markers for 109 individuals. For both mitochondrial and autosomal markers, we found a pronounced population structure, caused by major rivers, mountain ridges, and the Toba caldera. We found that genetic diversity and corresponding long-term effective population size estimates vary strongly among sampling regions for mitochondrial DNA, but show remarkable similarity for autosomal markers, hinting at male-driven long-distance gene flow. In support of this, we identified several individuals that were most likely sired by males originating from other genetic clusters. Our results highlight the effect of natural barriers in shaping the genetic structure of great ape populations, but also point toward important dispersal corridors on northern Sumatra that allow for genetic exchange.


PLOS ONE | 2012

Call cultures in orang-utans?

Serge A. Wich; Michael Krützen; Adriano R. Lameira; Alexander Nater; Natasha Arora; Meredith L. Bastian; Ellen J. M. Meulman; Helen C. Morrogh-Bernard; S. Suci Utami Atmoko; Joko Pamungkas; Dyah Perwitasari-Farajallah; Madeleine E. Hardus; Maria A. van Noordwijk; Carel P. van Schaik

Background Several studies suggested great ape cultures, arguing that human cumulative culture presumably evolved from such a foundation. These focused on conspicuous behaviours, and showed rich geographic variation, which could not be attributed to known ecological or genetic differences. Although geographic variation within call types (accents) has previously been reported for orang-utans and other primate species, we examine geographic variation in the presence/absence of discrete call types (dialects). Because orang-utans have been shown to have geographic variation that is not completely explicable by genetic or ecological factors we hypothesized that this will be similar in the call domain and predict that discrete call type variation between populations will be found. Methodology/Principal Findings We examined long-term behavioural data from five orang-utan populations and collected fecal samples for genetic analyses. We show that there is geographic variation in the presence of discrete types of calls. In exactly the same behavioural context (nest building and infant retrieval), individuals in different wild populations customarily emit either qualitatively different calls or calls in some but not in others. By comparing patterns in call-type and genetic similarity, we suggest that the observed variation is not likely to be explained by genetic or ecological differences. Conclusion/Significance These results are consistent with the potential presence of ‘call cultures’ and suggest that wild orang-utans possess the ability to invent arbitrary calls, which spread through social learning. These findings differ substantially from those that have been reported for primates before. First, the results reported here are on dialect and not on accent. Second, this study presents cases of production learning whereas most primate studies on vocal learning were cases of contextual learning. We conclude with speculating on how these findings might assist in bridging the gap between vocal communication in non-human primates and human speech.


Molecular Ecology | 2012

Parentage-based pedigree reconstruction reveals female matrilineal clusters and male-biased dispersal in nongregarious Asian great apes, the Bornean orang-utans (Pongo pygmaeus)

Natasha Arora; M. van Noordwijk; Corinne Ackermann; Erik P. Willems; Alexander Nater; Maja P. Greminger; Pirmin Nietlisbach; Lynda P. Dunkel; S S Utami Atmoko; Joko Pamungkas; Dyah Perwitasari-Farajallah; C. P. van Schaik; Michael Krützen

Philopatry and sex‐biased dispersal have a strong influence on population genetic structure, so the study of species dispersal patterns and evolutionary mechanisms shaping them are of great interest. Particularly nongregarious mammalian species present an underexplored field of study: despite their lower levels of sociality compared to group‐living species, interactions among individuals do occur, providing opportunities for cryptic kin selection. Among the least gregarious primates are orang‐utans (genus: Pongo), in which preferential associations among females have nevertheless been observed, but for which the presence of kin structures was so far unresolved because of the equivocal results of previous genetic studies. To clarify relatedness and dispersal patterns in orang‐utans, we examined the largest longitudinal set of individuals with combined genetic, spatial and behavioural data. We found that males had significantly higher mitochondrial DNA (mtDNA) variation and more unique haplotypes, thus underscoring their different maternal ancestries compared to females. Moreover, pedigree reconstruction based on 24 highly polymorphic microsatellite markers and mtDNA haplotypes demonstrated the presence of three matrilineal clusters of generally highly related females with substantially overlapping ranges. In orang‐utans and possibly other nongregarious species, comparing average biparental relatedness (r) of males and females to infer sex‐biased dispersal is extremely problematic. This is because the opportunistic sampling regime frequently employed in nongregarious species, combined with overlapping space use of distinct matrilineal clusters, leads to a strong downward bias when mtDNA lineage membership is ignored. Thus, in nongregarious species, correct inferences of dispersal can only be achieved by combining several genetic approaches with detailed spatial information.


BMC Genomics | 2014

Generation of SNP datasets for orangutan population genomics using improved reduced-representation sequencing and direct comparisons of SNP calling algorithms

Maja P. Greminger; Kai N. Stölting; Alexander Nater; Benoit Goossens; Natasha Arora; Rémy Bruggmann; Andrea Patrignani; Beatrice Nussberger; Reeta Sharma; Robert H. S. Kraus; Laurentius Ambu; Ian Singleton; Lounès Chikhi; Carel P. van Schaik; Michael Krützen

BackgroundHigh-throughput sequencing has opened up exciting possibilities in population and conservation genetics by enabling the assessment of genetic variation at genome-wide scales. One approach to reduce genome complexity, i.e. investigating only parts of the genome, is reduced-representation library (RRL) sequencing. Like similar approaches, RRL sequencing reduces ascertainment bias due to simultaneous discovery and genotyping of single-nucleotide polymorphisms (SNPs) and does not require reference genomes. Yet, generating such datasets remains challenging due to laboratory and bioinformatical issues. In the laboratory, current protocols require improvements with regards to sequencing homologous fragments to reduce the number of missing genotypes. From the bioinformatical perspective, the reliance of most studies on a single SNP caller disregards the possibility that different algorithms may produce disparate SNP datasets.ResultsWe present an improved RRL (iRRL) protocol that maximizes the generation of homologous DNA sequences, thus achieving improved genotyping-by-sequencing efficiency. Our modifications facilitate generation of single-sample libraries, enabling individual genotype assignments instead of pooled-sample analysis. We sequenced ~1% of the orangutan genome with 41-fold median coverage in 31 wild-born individuals from two populations. SNPs and genotypes were called using three different algorithms. We obtained substantially different SNP datasets depending on the SNP caller. Genotype validations revealed that the Unified Genotyper of the Genome Analysis Toolkit and SAMtools performed significantly better than a caller from CLC Genomics Workbench (CLC). Of all conflicting genotype calls, CLC was only correct in 17% of the cases. Furthermore, conflicting genotypes between two algorithms showed a systematic bias in that one caller almost exclusively assigned heterozygotes, while the other one almost exclusively assigned homozygotes.ConclusionsOur enhanced iRRL approach greatly facilitates genotyping-by-sequencing and thus direct estimates of allele frequencies. Our direct comparison of three commonly used SNP callers emphasizes the need to question the accuracy of SNP and genotype calling, as we obtained considerably different SNP datasets depending on caller algorithms, sequencing depths and filtering criteria. These differences affected scans for signatures of natural selection, but will also exert undue influences on demographic inferences. This study presents the first effort to generate a population genomic dataset for wild-born orangutans with known population provenance.


Nature microbiology | 2017

Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster

Natasha Arora; Verena J. Schuenemann; Günter Jäger; Alexander Peltzer; Alexander Seitz; Alexander Herbig; Michal Strouhal; Linda Grillová; Leonor Sánchez-Busó; Denise Kühnert; Kirsten I. Bos; Leyla Rivero Davis; Lenka Mikalová; S.M. Bruisten; Peter Komericki; Patrick French; Paul Grant; María A. Pando; Lucía Gallo Vaulet; Marcelo Rodríguez Fermepin; Antonio Martinez; Arturo Centurion Lara; Lorenzo Giacani; Steven J. Norris; David Šmajs; Philipp P. Bosshard; Fernando González-Candelas; Kay Nieselt; Johannes Krause; Homayoun C. Bagheri

The abrupt onslaught of the syphilis pandemic that started in the late fifteenth century established this devastating infectious disease as one of the most feared in human history1. Surprisingly, despite the availability of effective antibiotic treatment since the mid-twentieth century, this bacterial infection, which is caused by Treponema pallidum subsp. pallidum (TPA), has been re-emerging globally in the last few decades with an estimated 10.6 million cases in 2008 (ref. 2). Although resistance to penicillin has not yet been identified, an increasing number of strains fail to respond to the second-line antibiotic azithromycin3. Little is known about the genetic patterns in current infections or the evolutionary origins of the disease due to the low quantities of treponemal DNA in clinical samples and difficulties in cultivating the pathogen4. Here, we used DNA capture and whole-genome sequencing to successfully interrogate genome-wide variation from syphilis patient specimens, combined with laboratory samples of TPA and two other subspecies. Phylogenetic comparisons based on the sequenced genomes indicate that the TPA strains examined share a common ancestor after the fifteenth century, within the early modern era. Moreover, most contemporary strains are azithromycin-resistant and are members of a globally dominant cluster, named here as SS14-Ω. The cluster diversified from a common ancestor in the mid-twentieth century subsequent to the discovery of antibiotics. Its recent phylogenetic divergence and global presence point to the emergence of a pandemic strain cluster.


PLOS ONE | 2012

Effective population size dynamics and the demographic collapse of Bornean orang-utans.

Reeta Sharma; Natasha Arora; Benoit Goossens; Alexander Nater; Nadja V. Morf; Jordi Salmona; Michael William Bruford; Carel P. van Schaik; Michael Krützen; Lounès Chikhi

Bornean orang-utans experienced a major demographic decline and local extirpations during the Pleistocene and Holocene due to climate change, the arrival of modern humans, of farmers and recent commercially-driven habitat loss and fragmentation. The recent loss of habitat and its dramatic fragmentation has affected the patterns of genetic variability and differentiation among the remaining populations and increased the extinction risk of the most isolated ones. However, the contribution of recent demographic events to such genetic patterns is still not fully clear. Indeed, it can be difficult to separate the effects of recent anthropogenic fragmentation from the genetic signature of prehistoric demographic events. Here, we investigated the genetic structure and population size dynamics of orang-utans from different sites. Altogether 126 individuals were analyzed and a full-likelihood Bayesian approach was applied. All sites exhibited clear signals of population decline. Population structure is known to generate spurious bottleneck signals and we found that it does indeed contribute to the signals observed. However, population structure alone does not easily explain the observed patterns. The dating of the population decline varied across sites but was always within the 200–2000 years period. This suggests that in some sites at least, orang-utan populations were affected by demographic events that started before the recent anthropogenic effects that occurred in Borneo. These results do not mean that the recent forest exploitation did not leave its genetic mark on orang-utans but suggests that the genetic pool of orang-utans is also impacted by more ancient events. While we cannot identify the main cause for this decline, our results suggests that the decline may be related to the arrival of the first farmers or climatic events, and that more theoretical work is needed to understand how multiple demographic events impact the genome of species and how we can assess their relative contributions.


Molecular Ecology | 2015

Reconstructing the Demographic History of Orang-utans using Approximate Bayesian Computation

Alexander Nater; Maja P. Greminger; Natasha Arora; Carel P. van Schaik; Benoit Goossens; Ian Singleton; Ernst J. Verschoor; K. Warren; Michael Krützen

Investigating how different evolutionary forces have shaped patterns of DNA variation within and among species requires detailed knowledge of their demographic history. Orang‐utans, whose distribution is currently restricted to the South‐East Asian islands of Borneo (Pongo pygmaeus) and Sumatra (Pongo abelii), have likely experienced a complex demographic history, influenced by recurrent changes in climate and sea levels, volcanic activities and anthropogenic pressures. Using the most extensive sample set of wild orang‐utans to date, we employed an Approximate Bayesian Computation (ABC) approach to test the fit of 12 different demographic scenarios to the observed patterns of variation in autosomal, X‐chromosomal, mitochondrial and Y‐chromosomal markers. In the best‐fitting model, Sumatran orang‐utans exhibit a deep split of populations north and south of Lake Toba, probably caused by multiple eruptions of the Toba volcano. In addition, we found signals for a strong decline in all Sumatran populations ~24 ka, probably associated with hunting by human colonizers. In contrast, Bornean orang‐utans experienced a severe bottleneck ~135 ka, followed by a population expansion and substructuring starting ~82 ka, which we link to an expansion from a glacial refugium. We showed that orang‐utans went through drastic changes in population size and connectedness, caused by recurrent contraction and expansion of rainforest habitat during Pleistocene glaciations and probably hunting by early humans. Our findings emphasize the fact that important aspects of the evolutionary past of species with complex demographic histories might remain obscured when applying overly simplified models.

Collaboration


Dive into the Natasha Arora's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joko Pamungkas

Bogor Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernst J. Verschoor

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge