Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natasha M. Kablaoui is active.

Publication


Featured researches published by Natasha M. Kablaoui.


Bioorganic & Medicinal Chemistry Letters | 2013

Synthesis and biological evaluation of substituted benzoxazoles as inhibitors of mPGES-1: use of a conformation-based hypothesis to facilitate compound design.

Daniel P. Walker; Graciela B. Arhancet; Hwang-Fun Lu; Steven E. Heasley; Sue Metz; Natasha M. Kablaoui; Francisco M. Franco; Cathleen E. Hanau; Jeffrey A. Scholten; John Robert Springer; Yvette M. Fobian; Jeffrey S. Carter; Li Xing; Shengtian Yang; Alexander F. Shaffer; Gina M. Jerome; Michael T. Baratta; William M. Moore; Michael L. Vazquez

Microsomal prostaglandin E(2) synthase-1 (mPGES-1) is a novel therapeutic target for the treatment of inflammation and pain. In the preceding letter, we detailed the discovery of clinical candidate PF-04693627, a potent mPGES-1 inhibitor possessing a novel benzoxazole structure. While PF-04693627 was undergoing further preclinical profiling, we sought to identify a back-up mPGES-1 inhibitor that differentiated itself from PF-04693627. The design, synthesis, mPGES-1 activity and in vivo PK of a novel set of substituted benzoxazoles are described herein. Also described is a conformation-based hypothesis for mPGES-1 activity based on the preferred conformation of the cyclohexane ring within this class of inhibitors.


Journal of Medicinal Chemistry | 2011

Discovery of Novel, Potent, and Selective Inhibitors of 3-Phosphoinositide-Dependent Kinase (PDK1)

Sean Timothy Murphy; Gordon Alton; Simon Bailey; Sangita M. Baxi; Benjamin J. Burke; Thomas A. Chappie; Jacques Ermolieff; RoseAnn Ferre; Samantha Greasley; Michael J. Hickey; John M. Humphrey; Natasha M. Kablaoui; John Charles Kath; Steven Kazmirski; Michelle Kraus; Stan Kupchinsky; John Li; Laura Lingardo; Matthew A. Marx; Daniel T. Richter; Steven P. Tanis; Khanh Tran; William F. Vernier; Zhi Xie; Min-Jean Yin; Xiao-Hong Yu

Analogues substituted with various amines at the 6-position of the pyrazine ring on (4-amino-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)pyrazin-2-ylmethanone were discovered as potent and selective inhibitors of PDK1 with potential as anticancer agents. An early lead with 2-pyridine-3-ylethylamine as the pyrazine substituent showed moderate potency and selectivity. Structure-based drug design led to improved potency and selectivity against PI3Kα through a combination of cyclizing the ethylene spacer into a saturated, five-membered ring and substituting on the 4-position of the aryl ring with a fluorine. ADME properties were improved by lowering the lipophilicity with heteroatom replacements in the saturated, five-membered ring. The optimized analogues have a PDK1 Ki of 1 nM and >100-fold selectivity against PI3K/AKT-pathway kinases. The cellular potency of these analogues was assessed by the inhibition of AKT phosphorylation (T308) and by their antiproliferation activity against a number of tumor cell lines.


Bioorganic & Medicinal Chemistry Letters | 2009

Quinazolin-4-piperidin-4-methyl sulfamide PC-1 inhibitors: alleviating hERG interactions through structure based design.

Snahel D. Patel; Wendy M. Habeski; Alan C. Cheng; Elisa de la Cruz; Christine Loh; Natasha M. Kablaoui

PC-1 (NPP-1) inhibitors may be useful as therapeutics for the treatment of CDDP (calcium pyrophosphate dehydrate) deposition disease and osteoarthritis. We have identified a series of potent quinazolin-4-piperidin-4-ethyl sulfamide PC-1 inhibitors. The series, however, suffers from high affinity binding to hERG potassium channels, which can cause drug-induced QT prolongation. We used a hERG homology model to identify potential key interactions between our compounds and hERG, and the information gained was used to design and prepare a series of quinazolin-4-piperidin-4-methyl sulfamides that retain PC-1 activity but lack binding affinity for hERG.


Bioorganic & Medicinal Chemistry Letters | 2013

Novel benzoxazole inhibitors of mPGES-1.

Natasha M. Kablaoui; Snahel Patel; Jay Shao; Douglas Demian; Keith Hoffmaster; Francioise Berlioz; Michael L. Vazquez; William M. Moore; Richard A. Nugent

A novel series of potent benzoxazole mPGES-1 inhibitors has been derived from a hit from a high throughput screen. Compound 37 displays mPGES-1 inhibition in an enzyme assay (0.018 μM) and PGE-2 inhibition in a cell-based assay (0.034 μM). It demonstrates 500- and 2500-fold selectivity for mPGES-1 over COX-2 and 6-keto PGF-1α, respectively. In vivo PK studies in dogs demonstrate 55% oral bioavailability and an 7 h half-life.


Journal of Pharmacology and Experimental Therapeutics | 2016

Peripheral Administration of a Long-Acting Peptide Oxytocin Receptor Agonist Inhibits Fear-Induced Freezing.

Meera E. Modi; Mark J. Majchrzak; Kari R. Fonseca; Angela C. Doran; Sarah Osgood; Michelle Vanase-Frawley; Eric Feyfant; Heather McInnes; Ramin Darvari; Derek L. Buhl; Natasha M. Kablaoui

Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non–brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response.


Bioorganic & Medicinal Chemistry Letters | 2011

Potent and selective thiophene urea-templated inhibitors of S6K.

Ping Ye; Cyrille Kuhn; Miret Juan; Rahul Sharma; Brendan Connolly; Gordon Alton; Hu Liu; Robert Stanton; Natasha M. Kablaoui

S6K1 (p70 S6 kinase-1) is thought to play a critical role in the development of obesity and insulin resistance, thus making it an attractive target in developing medicines for the treatment of these disorders. We describe a novel thiophene urea class of S6K inhibitors. The lead matter for the development of these inhibitors came from mining the literature for reports of weak off-target S6K activity. These optimized inhibitors exhibit good potency and excellent selectivity for S6K over a panel of 43 kinases.


Bioorganic & Medicinal Chemistry Letters | 2008

Identification and SAR around N-{2-[4-(2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-[1,4]diazepan-1-yl]-ethyl}-2-phenoxy-nicotinamide, a selective α2C adrenergic receptor antagonist

Snahel D. Patel; Wendy M. Habeski; Hyunsuk Min; Jiansu Zhang; Robin Roof; Bradley Snyder; Gary Bora; Brian M. Campbell; Cheryl Li; Debra Hidayetoglu; Douglas S. Johnson; Archana Chaudhry; Maura E. Charlton; Natasha M. Kablaoui

The discovery of the CNS-penetrant and selective alpha(2C) adrenergic receptor antagonist N-{2-[4-(2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-[1,4]diazepan-1-yl]-ethyl}-2-phenoxy-nicotinamide, 13 is described. Structure-activity studies demonstrate the structural requirements for binding affinity, functional activity, and selectivity over other alpha(2)-AR subtypes.


Bioorganic & Medicinal Chemistry | 2016

Systematic N-methylation of oxytocin: Impact on pharmacology and intramolecular hydrogen bonding network.

Simone Sciabola; Gilles H. Goetz; Guoyun Bai; Bruce N. Rogers; David L. Gray; Allen J. Duplantier; Kari R. Fonseca; Michelle Vanase-Frawley; Natasha M. Kablaoui

Oxytocin (OT) is a peptide hormone agonist of the OT receptor (OTR) that plays an important role in social behaviors such as pair bonding, maternal bonding and trust. The pharmaceutical development of OT as an oral peptide therapeutic has been hindered historically by its unfavorable physicochemical properties, including molecular weight, polarity and number of hydrogen bond donors, which determines poor cell permeability. Here we describe the first systematic study of single and multiple N-methylations of OT and their effect on physicochemical properties as well as potency at the OT receptor. The agonist EC50 and percent effect for OTR are reported and show that most N-methylations are tolerated but with some loss in potency compared to OT. The effect of N-methylation on exposed polarity is assessed through the EPSA chromatographic method and the results validated against NMR temperature coefficient experiments and the determination of NMR solution structures. We found that backbone methylation of residues not involved in IMHB and removal of the N-terminal amine can significantly reduce the exposed polarity of peptides, and yet retain a significant OTR agonist activity. The results of this study also expose the potential challenge of using the N-methylation strategy for the OT system; while exposed polarity is reduced, in some cases backbone methylation produces a significant conformational change that compromises agonist activity. The data presented provides useful insights on the SAR of OT and suggests future design strategies that can be used to develop more permeable OTR agonists based on the OT framework.


Bioorganic & Medicinal Chemistry Letters | 2017

Hybrid peptide-small molecule oxytocin analogs are potent and selective agonists of the oxytocin receptor

Natasha M. Kablaoui; Michelle Vanase-Frawley; Simone Sciabola

Oxytocin (OT) is a peptide hormone agonist of the oxytocin receptor (OTR) that has been proposed as a therapeutic to treat a number of social and emotional disorders in addition to its current clinical use to induce labor and treat postpartum bleeding. OT is administered intravenously and intranasally rather than orally, in part because its low passive permeability causes low oral bioavailability. Non-peptidic OTR agonists have also been reported, but none with the exquisite potency of the peptide based agonists. In this report, we describe the OTR agonist activity and exposed polarity of a set of truncated OT analogs as well as hybrid peptide-small molecule analogs of OT. Examples of both truncated analogs and peptide-small molecule hybrid analogs are potent and selective OTR agonists. Hybrid agonist 13, which is 232 Da smaller than OT, still retains subnanomolar potency, full agonist activity, and selectivity over V1a. While these compounds were designed to address the low permeability of OT and other full length analogs, we found that reduction in molecular weight and the removal or replacement of the three amino acid tail of OT did not have a significant effect on passive permeability.


Cancer Research | 2010

Abstract 753: Novel, potent and selective small molecule inhibitors of 3-phosphoinositide-dependent kinase (PDK1)

Sean T. Murphy; Gordon Alton; Simon Bailey; Sangita M. Baxi; Ben Burke; Jacques Ermolieff; Samantha Greasley; Natasha M. Kablaoui; John Charles Kath; Darcy Kohls; Michael Kothe; Stan Kupchinsky; Laura Lingardo; Matthew A. Marx; Daniel T. Richter; Khanh Tran; William F. Vernier; Min-Jean Yin

Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC The phosphatidylinositol 3-kinase (PI3K) signaling pathway plays a crucial role in cell growth, proliferation and survival. Genomic aberrations in the PI3K pathway, such as mutational activation of PI3Kα or loss-of-function of the tumor suppressor PTEN, have been closely linked to the development and progression of a wide range of cancers. Inhibition of the key targets in the pathway, PI3K, AKT, mTOR & PDK1, may provide an effective treatment of cancer. In an effort to discover compounds that inhibit PDK1, we have developed a series of 3-Carbonyl-4-Amino-Pyrrolopyrimidine (CAP) compounds that are selective and potent PDK1 inhibitors. Early screening led to a viable starting point, PF-03772304, (4-amino-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-(6-methylamino-pyrazin-2-yl)-methanone, which has an IC50 of 94 nM for PDK1 and a ligand efficiency of 0.42. While potent, this lead was not selective against PI3K. Using structure-based drug design, this lead was modified to expand into the selectivity pocket of PDK1 (under the G-Loop), leading to the identification of a potent and pathway-selective compound, PF-05017255 ((4-Amino-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-{6-[(3S,4R)-4-(4-fluoro-phenyl)-tetrahydro-furan-3-ylamino]-pyrazin-2-yl}-methanone). PF-05017255 has a Ki of 0.6 nM for PDK1 and is more than 400-fold selective against other PI3K pathway kinases: PI3Kα, AKT, S6K and mTOR. For even greater kinase selectivity, we sought to lower the clogP of our lead (clogP for PF-05017255 is 3.0) to reduce the contribution from the hydrophobic effect. These efforts led to PF-05168899 (1-{(2R,3R)-3-[6-(4-Amino-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidine-5-carbonyl)-pyrazin-2-ylamino]-2-phenyl-pyrrolidin-1-yl}-ethanone) with a Ki of 0.4 nM for PDK1, a clogP of 2.1, and greater than 1000-fold selectivity against PI3Kα, AKT, S6K, mTOR, CDK2, CHK1 and PAK4. PF-05168899 also showed little inhibitory effect (<50% at 1 uM) against 33 of 35 kinases in a broader panel, demonstrating significant inhibition only against CHK2 (94%) and AuroraB (54%). In addition, the most potent analogs (e.g. PF-05168889) inhibited the phosphorylation of AKT at the residue threonine 308 (IC50 40-200 nM) in a variety of cancer cell lines (e.g. H460, A549). The design, synthesis and SAR of this chemical series will be described. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 753.

Collaboration


Dive into the Natasha M. Kablaoui's collaboration.

Researchain Logo
Decentralizing Knowledge