Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle Vanase-Frawley is active.

Publication


Featured researches published by Michelle Vanase-Frawley.


Journal of Medicinal Chemistry | 2009

Identification of a Brain Penetrant PDE9A Inhibitor Utilizing Prospective Design and Chemical Enablement as a Rapid Lead Optimization Strategy

Patrick Robert Verhoest; Caroline Proulx-Lafrance; Michael Corman; Lois K. Chenard; Christopher John Helal; Xinjun Hou; Robin J. Kleiman; Shenping Liu; Eric S. Marr; Frank S. Menniti; Christopher J. Schmidt; Michelle Vanase-Frawley; Anne W. Schmidt; Robert Williams; Frederick R. Nelson; Kari R. Fonseca; Spiros Liras

By use of chemical enablement and prospective design, a novel series of selective, brain penetrant PDE9A inhibitors have been identified that are capable of producing in vivo elevations of brain cGMP.


Journal of Pharmacology and Experimental Therapeutics | 2012

Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo.

Robin J. Kleiman; Douglas S. Chapin; Curt Christoffersen; Jody Freeman; Kari R. Fonseca; Kieran F. Geoghegan; Sarah Grimwood; Victor Guanowsky; Mihály Hajós; John F. Harms; Christopher John Helal; William E. Hoffmann; Geralyn P. Kocan; Mark J. Majchrzak; Dina McGinnis; Stafford McLean; Frank S. Menniti; Fredrick R. Nelson; Robin Roof; Anne W. Schmidt; Patricia A. Seymour; Diane Stephenson; Francis David Tingley; Michelle Vanase-Frawley; Patrick Robert Verhoest; Christopher J. Schmidt

Cyclic nucleotides are critical regulators of synaptic plasticity and participate in requisite signaling cascades implicated across multiple neurotransmitter systems. Phosphodiesterase 9A (PDE9A) is a high-affinity, cGMP-specific enzyme widely expressed in the rodent central nervous system. In the current study, we observed neuronal staining with antibodies raised against PDE9A protein in human cortex, cerebellum, and subiculum. We have also developed several potent, selective, and brain-penetrant PDE9A inhibitors and used them to probe the function of PDE9A in vivo. Administration of these compounds to animals led to dose-dependent accumulation of cGMP in brain tissue and cerebrospinal fluid, producing a range of biological effects that implied functional significance for PDE9A-regulated cGMP in dopaminergic, cholinergic, and serotonergic neurotransmission and were consistent with the widespread distribution of PDE9A. In vivo effects of PDE9A inhibition included reversal of the respective disruptions of working memory by ketamine, episodic and spatial memory by scopolamine, and auditory gating by amphetamine, as well as potentiation of risperidone-induced improvements in sensorimotor gating and reversal of the stereotypic scratching response to the hallucinogenic 5-hydroxytryptamine 2A agonist mescaline. The results suggested a role for PDE9A in the regulation of monoaminergic circuitry associated with sensory processing and memory. Thus, PDE9A activity regulates neuronal cGMP signaling downstream of multiple neurotransmitter systems, and inhibition of PDE9A may provide therapeutic benefits in psychiatric and neurodegenerative diseases promoted by the dysfunction of these diverse neurotransmitter systems.


Journal of Medicinal Chemistry | 2012

Design and Discovery of 6-[(3S,4S)-4-Methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one (PF-04447943), a Selective Brain Penetrant PDE9A Inhibitor for the Treatment of Cognitive Disorders

Patrick Robert Verhoest; Kari R. Fonseca; Xinjun Hou; Caroline Proulx-Lafrance; Michael Corman; Christopher John Helal; Michelle Marie Claffey; Jamison B. Tuttle; Karen J. Coffman; Shenpinq Liu; Frederick R. Nelson; Robin J. Kleiman; Frank S. Menniti; Christopher J. Schmidt; Michelle Vanase-Frawley; Spiros Liras

6-[(3S,4S)-4-Methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one (PF-04447943) is a novel PDE9A inhibitor identified using parallel synthetic chemistry and structure-based drug design (SBDD) and has advanced into clinical trials. Selectivity for PDE9A over other PDE family members was achieved by targeting key residue differences between the PDE9A and PDE1C catalytic site. The physicochemical properties of the series were optimized to provide excellent in vitro and in vivo pharmacokinetics properties in multiple species including humans. It has been reported to elevate central cGMP levels in the brain and CSF of rodents. In addition, it exhibits procognitive activity in several rodent models and synaptic stabilization in an amyloid precursor protein (APP) transgenic mouse model. Recent disclosures from clinical trials confirm that it is well tolerated in humans and elevates cGMP in cerebral spinal fluid of healthy volunteers, confirming that it is a quality pharmacological tool for testing clinical hypotheses in disease states associated with impairment of cGMP signaling or cognition.


Journal of Pharmacology and Experimental Therapeutics | 2011

Pharmacological Characterization of 2-Methyl-N-((2′-(pyrrolidin-1-ylsulfonyl)biphenyl-4-yl)methyl)propan-1-amine (PF-04455242), a High-Affinity Antagonist Selective for κ-Opioid Receptors

Sarah Grimwood; Yifeng Lu; Anne W. Schmidt; Michelle Vanase-Frawley; Aarti Sawant-Basak; Emily Miller; Stafford McLean; Jody Freeman; Stephen Wong; Jay P. McLaughlin; Patrick Robert Verhoest

2-Methyl-N-((2′-(pyrrolidin-1-ylsulfonyl)biphenyl-4-yl)methyl)propan-1-amine (PF-04455242) is a novel κ-opioid receptor (KOR) antagonist with high affinity for human (3 nM), rat (21 nM), and mouse (22 nM) KOR, a ∼20-fold reduced affinity for human μ-opioid receptors (MORs; Ki = 64 nM), and negligible affinity for δ-opioid receptors (Ki > 4 μM). PF-04455242 also showed selectivity for KORs in vivo. In rats, PF-04455242 blocked KOR and MOR agonist-induced analgesia with ID50 values of 1.5 and 9.8 mg/kg, respectively, and inhibited ex vivo [3H](2-(benzofuran-4-yl)-N-methyl-N-((5S,7R,8R)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]decan-8-yl)acetamide ([3H]CI977) and [3H](2S)-2-[[2-[[(2R)-2-[[(2S)-2-amino-3-(4-hydroxyphenyl) propanoyl]amino]propanoyl]amino]acetyl]-methylamino]-N-(2-hydroxyethyl)-3-phenylpropanamide ([3H]DAMGO) binding to KOR and MOR receptors with ID50 values of 2.0 and 8.6 mg/kg, respectively. An in vivo binding assay was developed using (-)-4-[3H]methoxycarbonyl-2-[(1-pyrrolidinylmethyl]-1-[(3,4-dichlorophenyl)acetyl]-piperidine ([3H]PF-04767135), a tritiated version of the KOR positron emission tomography ligand (-)-4-[11C]methoxycarbonyl-2-[(1-pyrrolidinylmethyl]-1-[(3,4-dichlorophenyl)acetyl]-piperidine ([11C]GR103545) in which PF-04455242 had an ID50 of 5.2 mg/kg. PF-04455242 demonstrated antidepressant-like efficacy (mouse forced-swim test), attenuated the behavioral effects of stress (mouse social defeat stress assay), and showed therapeutic potential in treating reinstatement of extinguished cocaine-seeking behavior (mouse conditioned place preference). KOR agonist-induced plasma prolactin was investigated as a translatable mechanism biomarker. Spiradoline (0.32 mg/kg) significantly increased rat plasma prolactin levels from 1.9 ± 0.4 to 41.9 ± 4.9 ng/ml. PF-04455242 dose-dependently reduced the elevation of spiradoline-induced plasma prolactin with an ID50 of 2.3 ± 0.1 mg/kg, which aligned well with the ED50 values obtained from the rat in vivo binding and efficacy assays. These data provide further evidence that KOR antagonists have potential for the treatment of depression and addiction disorders.


Journal of Pharmacology and Experimental Therapeutics | 2012

The 5-Hydroxytryptamine4 Receptor Agonists Prucalopride and PRX-03140 Increase Acetylcholine and Histamine Levels in the Rat Prefrontal Cortex and the Power of Stimulated Hippocampal θ Oscillations

David E. Johnson; Elena M. Drummond; Sarah Grimwood; Aarti Sawant-Basak; Emily Miller; Elaine E. Tseng; Laura McDowell; Michelle Vanase-Frawley; Katherine Fisher; David M. Rubitski; Kim Stutzman-Engwall; Robin T. Nelson; Weldon Horner; Roxanne Gorczyca; Mihály Hajós; Chester J. Siok

5-Hydroxytryptamine (5-HT)4 receptor agonists reportedly stimulate brain acetylcholine (ACh) release, a property that might provide a new pharmacological approach for treating cognitive deficits associated with Alzheimers disease. The purpose of this study was to compare the binding affinities, functional activities, and effects on neuropharmacological responses associated with cognition of two highly selective 5-HT4 receptor agonists, prucalopride and 6,7-dihydro-4-hydroxy-7-isopropyl-6-oxo-N-[3-(piperidin-1-yl)propyl]thieno[2,3-b]pyridine-5-carboxamide (PRX-03140). In vitro, prucalopride and PRX-03140 bound to native rat brain 5-HT4 receptors with Ki values of 30 nM and 110 nM, respectively, and increased cAMP production in human embryonic kidney-293 cells expressing recombinant rat 5-HT4 receptors. In vivo receptor occupancy studies established that prucalopride and PRX-03140 were able to penetrate the brain and bound to 5-HT4 receptors in rat brain, achieving 50% receptor occupancy at free brain exposures of 330 nM and 130 nM, respectively. Rat microdialysis studies revealed that prucalopride maximally increased ACh and histamine levels in the prefrontal cortex at 5 and 10 mg/kg, whereas PRX-03140 significantly increased cortical histamine levels at 50 mg/kg, failing to affect ACh release at doses lower than 150 mg/kg. In combination studies, donepezil-induced increases in cortical ACh levels were potentiated by prucalopride and PRX-03140. Electrophysiological studies in rats demonstrated that both compounds increased the power of brainstem-stimulated hippocampal θ oscillations at 5.6 mg/kg. These findings show for the first time that the 5-HT4 receptor agonists prucalopride and PRX-03140 can increase cortical ACh and histamine levels, augment donepezil-induced ACh increases, and increase stimulated-hippocampal θ power, all neuropharmacological parameters consistent with potential positive effects on cognitive processes.


Journal of Medicinal Chemistry | 2012

Application of structure-based drug design and parallel chemistry to identify selective, brain penetrant, in vivo active phosphodiesterase 9A inhibitors.

Michelle Marie Claffey; Christopher John Helal; Patrick Robert Verhoest; Zhijun Kang; Kristina S. Fors; Stanley Jung; Jiaying Zhong; Mark W. Bundesmann; Xinjun Hou; Shenping Lui; Robin J. Kleiman; Michelle Vanase-Frawley; Anne W. Schmidt; Frank S. Menniti; Christopher J. Schmidt; William E. Hoffman; Mihály Hajós; Laura McDowell; Rebecca E. O’Connor; Mary MacDougall-Murphy; Kari R. Fonseca; Stacey L. Becker; Frederick R. Nelson; Spiros Liras

Phosphodiesterase 9A inhibitors have shown activity in preclinical models of cognition with potential application as novel therapies for treating Alzheimers disease. Our clinical candidate, PF-04447943 (2), demonstrated acceptable CNS permeability in rats with modest asymmetry between central and peripheral compartments (free brain/free plasma = 0.32; CSF/free plasma = 0.19) yet had physicochemical properties outside the range associated with traditional CNS drugs. To address the potential risk of restricted CNS penetration with 2 in human clinical trials, we sought to identify a preclinical candidate with no asymmetry in rat brain penetration and that could advance into development. Merging the medicinal chemistry strategies of structure-based design with parallel chemistry, a novel series of PDE9A inhibitors was identified that showed improved selectivity over PDE1C. Optimization afforded preclinical candidate 19 that demonstrated free brain/free plasma ≥ 1 in rat and reduced microsomal clearance along with the ability to increase cyclic guanosine monophosphosphate levels in rat CSF.


Journal of Medicinal Chemistry | 2012

Identification of Multiple 5-HT4 Partial Agonist Clinical Candidates for the Treatment of Alzheimer’s Disease

Michael Aaron Brodney; David E. Johnson; Aarti Sawant-Basak; Karen J. Coffman; Elena M. Drummond; Emily L. Hudson; Katherine Fisher; Hirohide Noguchi; Nobuaki Waizumi; Laura McDowell; Alexandros Papanikolaou; Betty Pettersen; Anne W. Schmidt; Elaine E. Tseng; Kim Stutzman-Engwall; David M. Rubitski; Michelle Vanase-Frawley; Sarah Grimwood

The cognitive impairments observed in Alzheimers disease (AD) are in part a consequence of reduced acetylcholine (ACh) levels resulting from a loss of cholinergic neurons. Preclinically, serotonin 4 receptor (5-HT(4)) agonists are reported to modulate cholinergic function and therefore may provide a new mechanistic approach for treating cognitive deficits associated with AD. Herein we communicate the design and synthesis of potent, selective, and brain penetrant 5-HT(4) agonists. The overall goal of the medicinal chemistry strategy was identification of structurally diverse clinical candidates with varying intrinsic activities. The exposure-response relationships between binding affinity, intrinsic activity, receptor occupancy, drug exposure, and pharmacodynamic activity in relevant preclinical models of AD were utilized as key selection criteria for advancing compounds. On the basis of their excellent balance of pharmacokinetic attributes and safety, two lead 5-HT(4) partial agonist candidates 2d and 3 were chosen for clinical development.


American Journal of Human Genetics | 2016

Biallelic Mutations in PDE10A Lead to Loss of Striatal PDE10A and a Hyperkinetic Movement Disorder with Onset in Infancy

Christine P. Diggle; Stacey J. Sukoff Rizzo; Michael Popiolek; Reetta Hinttala; Jan-Philip Schülke; Manju A. Kurian; Ian M. Carr; Alexander F. Markham; David T. Bonthron; Christopher M. Watson; Saghira Malik Sharif; Veronica Reinhart; Larry C. James; Michelle Vanase-Frawley; Erik Charych; Melanie Allen; John F. Harms; Christopher J. Schmidt; Joanne Ng; Karen Pysden; Christine A. Strick; Päivi Vieira; Katariina Mankinen; Hannaleena Kokkonen; Matti Kallioinen; Raija Sormunen; Juha O. Rinne; Jarkko Johansson; Kati Alakurtti; Laura Huilaja

Deficits in the basal ganglia pathways modulating cortical motor activity underlie both Parkinson disease (PD) and Huntington disease (HD). Phosphodiesterase 10A (PDE10A) is enriched in the striatum, and animal data suggest that it is a key regulator of this circuitry. Here, we report on germline PDE10A mutations in eight individuals from two families affected by a hyperkinetic movement disorder due to homozygous mutations c.320A>G (p.Tyr107Cys) and c.346G>C (p.Ala116Pro). Both mutations lead to a reduction in PDE10A levels in recombinant cellular systems, and critically, positron-emission-tomography (PET) studies with a specific PDE10A ligand confirmed that the p.Tyr107Cys variant also reduced striatal PDE10A levels in one of the affected individuals. A knock-in mouse model carrying the homologous p.Tyr97Cys variant had decreased striatal PDE10A and also displayed motor abnormalities. Striatal preparations from this animal had an impaired capacity to degrade cyclic adenosine monophosphate (cAMP) and a blunted pharmacological response to PDE10A inhibitors. These observations highlight the critical role of PDE10A in motor control across species.


Bioorganic & Medicinal Chemistry Letters | 2010

Biaryl piperidines as potent and selective delta opioid receptor ligands

Spiros Liras; Stanton Furst Mchardy; Martin Patrick Allen; Barb E. Segelstein; Steven D. Heck; Dianne K. Bryce; Anne W. Schmidt; Michelle Vanase-Frawley; Ernesto Callegari; Stafford McLean

The design and synthesis of novel opiates are reported. Based on the message-address principle a novel class of 4,4- and 3,3-biaryl piperidines was designed and synthesized. Biological evaluation confirmed that these compounds exhibit high affinity and selectivity for the delta opioid receptor. Key structure-activity relationships that influence affinity, selectivity, functional activity and clearance are reported.


Journal of Pharmacology and Experimental Therapeutics | 2016

Peripheral Administration of a Long-Acting Peptide Oxytocin Receptor Agonist Inhibits Fear-Induced Freezing.

Meera E. Modi; Mark J. Majchrzak; Kari R. Fonseca; Angela C. Doran; Sarah Osgood; Michelle Vanase-Frawley; Eric Feyfant; Heather McInnes; Ramin Darvari; Derek L. Buhl; Natasha M. Kablaoui

Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non–brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response.

Researchain Logo
Decentralizing Knowledge