Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Chantret is active.

Publication


Featured researches published by Nathalie Chantret.


The Plant Cell | 2005

Molecular Basis of Evolutionary Events That Shaped the Hardness Locus in Diploid and Polyploid Wheat Species (Triticum and Aegilops)

Nathalie Chantret; Jérôme Salse; François Sabot; Sadequr Rahman; Arnaud Bellec; Bastien Laubin; Ivan Dubois; Carole Dossat; Pierre Sourdille; Philippe Joudrier; Marie-Françoise Gautier; Laurence Cattolico; Michel Beckert; Sébastien Aubourg; Jean Weissenbach; Michel Caboche; M. Bernard; Philippe Leroy; Boulos Chalhoub

The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing corresponding sequences of diploid, tertraploid, and hexaploid wheat species (Triticum and Aegilops). Genomic rearrangements, such as transposable element insertions, genomic deletions, duplications, and inversions, were shown to constitute the major differences when the same genomes (i.e., the A, B, or D genomes) were compared between species of different ploidy levels. The comparative analysis allowed us to determine the extent and sequences of the rearranged regions as well as rearrangement breakpoints and sequence motifs at their boundaries, which suggest rearrangement by illegitimate recombination. Among these genomic rearrangements, the previously reported Pina and Pinb genes loss from the Ha locus of polyploid wheat species was caused by a large genomic deletion that probably occurred independently in the A and B genomes. Moreover, the Ha locus in the D genome of hexaploid wheat (T. aestivum) is 29 kb smaller than in the D genome of its diploid progenitor Ae. tauschii, principally because of transposable element insertions and two large deletions caused by illegitimate recombination. Our data suggest that illegitimate DNA recombination, leading to various genomic rearrangements, constitutes one of the major evolutionary mechanisms in wheat species.


New Phytologist | 2014

High-density genome-wide association mapping implicates an F-box encoding gene in Medicago truncatula resistance to Aphanomyces euteiches

Maxime Bonhomme; Olivier André; Yacine Badis; Joëlle Ronfort; Concetta Burgarella; Nathalie Chantret; Jean Marie Prosperi; Roman Briskine; Joann Mudge; Frédéric Debellé; Hélène Navier; Henri Miteul; Ahmed Hajri; Alain Baranger; Peter Tiffin; Bernard Dumas; Marie Laure Pilet-Nayel; Nevin D. Young; Christophe Jacquet

• The use of quantitative disease resistance (QDR) is a promising strategy for promoting durable resistance to plant pathogens, but genes involved in QDR are largely unknown. To identify genetic components and accelerate improvement of QDR in legumes to the root pathogen Aphanomyces euteiches, we took advantage of both the recently generated massive genomic data for Medicago truncatula and natural variation of this model legume. • A high-density (≈5.1 million single nucleotide polymorphisms (SNPs)) genome-wide association study (GWAS) was performed with both in vitro and glasshouse phenotyping data collected for 179 lines. • GWAS identified several candidate genes and pinpointed two independent major loci on the top of chromosome 3 that were detected in both phenotyping methods. Candidate SNPs in the most significant locus (σ(A)²= 23%) were in the promoter and coding regions of an F-box protein coding gene. Subsequent qRT-PCR and bioinformatic analyses performed on 20 lines demonstrated that resistance is associated with mutations directly affecting the interaction domain of the F-box protein rather than gene expression. • These results refine the position of previously identified QTL to specific candidate genes, suggest potential molecular mechanisms, and identify new loci explaining QDR against A. euteiches.


Genetica | 2006

Morgane, a new LTR retrotransposon group, and its subfamilies in wheats

François Sabot; Pierre Sourdille; Nathalie Chantret; M. Bernard

Transposable elements are the main components of grass genomes, especially in Triticeae species. In a previous analysis, we identified a very short element, Morgane_CR626934-1; here we describe more precisely this unusual element. Morgane_CR626934-1 shows high sequence identity (until 98%) with ESTs belonging to other possible small elements, expressed under abiotic and biotic stress conditions. No putative functional polyprotein could be identified in all of these different Morgane-like sequences. Moreover, elements from the Morgane_CR626934-1 subfamily are found only in wheats and Agropyrum genomes and among these species, only Ae. tauschii and T. aestivum present a high copy number of these elements. They are highly conserved in wheat genomes (95.5%). Based on the uncommon characteristics of the described Morgane-like elements, we proposed to classify them in a new group within the Class I LTR retrotransposon, the Morgane group.


Plant Physiology | 2016

Evolutionary dynamics of the Leucine-Rich Repeats Receptor-Like Kinase (LRR-RLK) subfamily in angiosperms.

Iris Fischer; Anne Dievart; Gaëtan Droc; Jean François Dufayard; Nathalie Chantret

Phylogenetic analysis of leucine-rich repeat-containing receptor-like kinases demonstrates the dynamic nature of gene duplication, loss, and selection in this family. Gene duplications are an important factor in plant evolution, and lineage-specific expanded (LSE) genes are of particular interest. Receptor-like kinases expanded massively in land plants, and leucine-rich repeat receptor-like kinases (LRR-RLK) constitute the largest receptor-like kinases family. Based on the phylogeny of 7,554 LRR-RLK genes from 31 fully sequenced flowering plant genomes, the complex evolutionary dynamics of this family was characterized in depth. We studied the involvement of selection during the expansion of this family among angiosperms. LRR-RLK subgroups harbor extremely contrasting rates of duplication, retention, or loss, and LSE copies are predominantly found in subgroups involved in environmental interactions. Expansion rates also differ significantly depending on the time when rounds of expansion or loss occurred on the angiosperm phylogenetic tree. Finally, using a dN/dS-based test in a phylogenetic framework, we searched for selection footprints on LSE and single-copy LRR-RLK genes. Selective constraint appeared to be globally relaxed at LSE genes, and codons under positive selection were detected in 50% of them. Moreover, the leucine-rich repeat domains, and specifically four amino acids in them, were found to be the main targets of positive selection. Here, we provide an extensive overview of the expansion and evolution of this very large gene family.


Molecular Ecology Resources | 2017

A large set of 26 new reference transcriptomes dedicated to comparative population genomics in crops and wild relatives

Gautier Sarah; Félix Homa; Stéphanie Pointet; Sandy Contreras; François Sabot; Benoit Nabholz; Sylvain Santoni; Laure Sauné; Morgane Ardisson; Nathalie Chantret; Christopher Sauvage; James Tregear; Cyril Jourda; David Pot; Yves Vigouroux; Hâna Chaïr; Nora Scarcelli; Claire Billot; Nabila Yahiaoui; Roberto Bacilieri; Bouchaib Khadari; Michel Boccara; Adeline Barnaud; Jean-Pierre Péros; Jean-Pierre Labouisse; Jean Louis Pham; Jacques David; Sylvain Glémin; Manuel Ruiz

We produced a unique large data set of reference transcriptomes to obtain new knowledge about the evolution of plant genomes and crop domestication. For this purpose, we validated a RNA‐Seq data assembly protocol to perform comparative population genomics. For the validation, we assessed and compared the quality of de novo Illumina short‐read assemblies using data from two crops for which an annotated reference genome was available, namely grapevine and sorghum. We used the same protocol for the release of 26 new transcriptomes of crop plants and wild relatives, including still understudied crops such as yam, pearl millet and fonio. The species list has a wide taxonomic representation with the inclusion of 15 monocots and 11 eudicots. All contigs were annotated using BLAST, prot4EST and Blast2GO. A strong originality of the data set is that each crop is associated with close relative species, which will permit whole‐genome comparative evolutionary studies between crops and their wild‐related species. This large resource will thus serve research communities working on both crops and model organisms. All the data are available at http://arcad-bioinformatics.southgreen.fr/.


BMC Plant Biology | 2014

Impact of recurrent gene duplication on adaptation of plant genomes

Iris Fischer; Jacques Dainat; Vincent Ranwez; Sylvain Glémin; Jean-François Dufayard; Nathalie Chantret

BackgroundRecurrent gene duplication and retention played an important role in angiosperm genome evolution. It has been hypothesized that these processes contribute significantly to plant adaptation but so far this hypothesis has not been tested at the genome scale.ResultsWe studied available sequenced angiosperm genomes to assess the frequency of positive selection footprints in lineage specific expanded (LSE) gene families compared to single-copy genes using a dN/dS-based test in a phylogenetic framework. We found 5.38% of alignments in LSE genes with codons under positive selection. In contrast, we found no evidence for codons under positive selection in the single-copy reference set. An analysis at the branch level shows that purifying selection acted more strongly on single-copy genes than on LSE gene clusters. Moreover we detect significantly more branches indicating evolution under positive selection and/or relaxed constraint in LSE genes than in single-copy genes.ConclusionsIn this – to our knowledge –first genome-scale study we provide strong empirical support for the hypothesis that LSE genes fuel adaptation in angiosperms. Our conservative approach for detecting selection footprints as well as our results can be of interest for further studies on (plant) gene family evolution.


BMC Evolutionary Biology | 2011

Molecular adaptation in flowering and symbiotic recognition pathways: insights from patterns of polymorphism in the legume Medicago truncatula

Stéphane De Mita; Nathalie Chantret; Karine Loridon; Joëlle Ronfort; Thomas Bataillon

BackgroundWe studied patterns of molecular adaptation in the wild Mediterranean legume Medicago truncatula. We focused on two phenotypic traits that are not functionally linked: flowering time and perception of symbiotic microbes. Phenology is an important fitness component, especially for annual plants, and many instances of molecular adaptation have been reported for genes involved in flowering pathways. While perception of symbiotic microbes is also integral to adaptation in many plant species, very few reports of molecular adaptation exist for symbiotic genes. Here we used data from 57 individuals and 53 gene fragments to quantify the overall strength of both positive and purifying selection in M. truncatula and asked if footprints of positive selection can be detected at key genes of rhizobia recognition pathways.ResultsWe examined nucleotide variation among 57 accessions from natural populations in 53 gene fragments: 5 genes involved in nitrogen-fixing bacteria recognition, 11 genes involved in flowering, and 37 genes used as control loci. We detected 1757 polymorphic sites yielding an average nucleotide diversity (pi) of 0.003 per site. Non-synonymous variation is under sizable purifying selection with 90% of amino-acid changing mutations being strongly selected against. Accessions were structured in two groups consistent with geographical origins. Each of these two groups harboured an excess of rare alleles, relative to expectations of a constant-sized population, suggesting recent population expansion. Using coalescent simulations and an approximate Bayesian computation framework we detected several instances of genes departing from selective neutrality within each group and showed that the polymorphism of two nodulation and four flowering genes has probably been shaped by recent positive selection.ConclusionWe quantify the intensity of purifying selection in the M. truncatula genome and show that putative footprints of natural selection can be detected at different time scales in both flowering and symbiotic pathways.


Journal of Molecular Evolution | 2008

Contrasted Microcolinearity and Gene Evolution Within a Homoeologous Region of Wheat and Barley Species

Nathalie Chantret; Jérôme Salse; François Sabot; Arnaud Bellec; Bastien Laubin; Ivan Dubois; Carole Dossat; Pierre Sourdille; Philippe Joudrier; Marie-Françoise Gautier; Laurence Cattolico; Michel Beckert; Sébastien Aubourg; Jean Weissenbach; Michel Caboche; Philippe Leroy; M. Bernard; Boulos Chalhoub

We study here the evolution of genes located in the same physical locus using the recently sequenced Ha locus in seven wheat genomes in diploid, tetraploid, and hexaploid species and compared them with barley and rice orthologous regions. We investigated both the conservation of microcolinearity and the molecular evolution of genes, including coding and noncoding sequences. Microcolinearity is restricted to two groups of genes (Unknown gene-2, VAMP, BGGP, Gsp-1, and Unknown gene-8 surrounded by several copies of ATPase), almost conserved in rice and barley, but in a different relative position. Highly conserved genes between wheat and rice run along with genes harboring different copy numbers and highly variable sequences between close wheat genomes. The coding sequence evolution appeared to be submitted to heterogeneous selective pressure and intronic sequences analysis revealed that the molecular clock hypothesis is violated in most cases.


Molecular Ecology Resources | 2013

Single-nucleotide polymorphism discovery and diversity in the model legume Medicago truncatula

Karine Loridon; Concetta Burgarella; Nathalie Chantret; Frédéric Martins; Jérôme Gouzy; Jean-Marie Prosperi; Joëlle Ronfort

Extensive genomic resources are available in the model legume Medicago truncatula. Here, we present the discovery and design of the first array of single‐nucleotide polymorphism (SNP) markers in M. truncatula through large‐scale Sanger resequencing of genomic fragments spanning the genome, in a diverse panel of 16 M. truncatula accessions. Both anonymous fragments and fragments targeting candidate genes for flowering phenology and symbiosis were surveyed for nucleotide variation in almost 230 kb of unique genomic regions. A set of 384 SNP markers was designed for an Illuminas GoldenGate assay, genotyped on a collection of 192 inbred lines (CC192) representing the geographical range of the species and used to survey the diversity of two natural populations. Finally, 86% of the tested SNPs were of high quality and exhibited polymorphism in the CC192 collection. Even at the population level, we detected polymorphism for more than 50% of the selected SNPs. Analysis of the allele frequency spectrum in the CC192 showed a reduced ascertainment bias, mostly limited to very rare alleles (frequency <0.01). The substantial polymorphism detected at the species and population levels, the high marker quality and the potential to survey large samples of individuals make this set of SNP markers a valuable tool to improve our understanding of the effect of demographic and selective factors that shape the natural genetic diversity within the selfing species Medicago truncatula.


BMC Evolutionary Biology | 2012

Contrasted patterns of selective pressure in three recent paralogous gene pairs in the Medicago genus (L.)

Joan Ho-Huu; Joëlle Ronfort; Stéphane De Mita; Thomas Bataillon; Isabelle Hochu; Audrey Weber; Nathalie Chantret

BackgroundGene duplications are a molecular mechanism potentially mediating generation of functional novelty. However, the probabilities of maintenance and functional divergence of duplicated genes are shaped by selective pressures acting on gene copies immediately after the duplication event. The ratio of non-synonymous to synonymous substitution rates in protein-coding sequences provides a means to investigate selective pressures based on genic sequences. Three molecular signatures can reveal early stages of functional divergence between gene copies: change in the level of purifying selection between paralogous genes, occurrence of positive selection, and transient relaxed purifying selection following gene duplication. We studied three pairs of genes that are known to be involved in an interaction with symbiotic bacteria and were recently duplicated in the history of the Medicago genus (Fabaceae). We sequenced two pairs of polygalacturonase genes (Pg11-Pg3 and Pg11a-Pg11c) and one pair of auxine transporter-like genes (Lax2-Lax4) in 17 species belonging to the Medicago genus, and sought for molecular signatures of differentiation between copies.ResultsSelective histories revealed by these three signatures of molecular differentiation were found to be markedly different between each pair of paralogs. We found sites under positive selection in the Pg11 paralogs while Pg3 has mainly evolved under purifying selection. The most recent paralogs examined Pg11a and Pg11c, are both undergoing positive selection and might be acquiring new functions. Lax2 and Lax4 paralogs are both under strong purifying selection, but still underwent a temporary relaxation of purifying selection immediately after duplication.ConclusionsThis study illustrates the variety of selective pressures undergone by duplicated genes and the effect of age of the duplication. We found that relaxation of selective constraints immediately after duplication might promote adaptive divergence.

Collaboration


Dive into the Nathalie Chantret's collaboration.

Top Co-Authors

Avatar

Joëlle Ronfort

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iris Fischer

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Concetta Burgarella

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

M. Bernard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pierre Sourdille

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bastien Laubin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Boulos Chalhoub

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Gaëtan Droc

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge