Nathalie Corvaia
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathalie Corvaia.
Nature Reviews Immunology | 2010
Alain Beck; Thierry Wurch; Christian Bailly; Nathalie Corvaia
Antibodies and related products are the fastest growing class of therapeutic agents. By analysing the regulatory approvals of IgG-based biotherapeutic agents in the past 10 years, we can gain insights into the successful strategies used by pharmaceutical companies so far to bring innovative drugs to the market. Many challenges will have to be faced in the next decade to bring more efficient and affordable antibody-based drugs to the clinic. Here, we discuss strategies to select the best therapeutic antigen targets, to optimize the structure of IgG antibodies and to design related or new structures with additional functions.
Nature Reviews Drug Discovery | 2017
Alain Beck; Liliane Goetsch; Charles Dumontet; Nathalie Corvaia
Antibody–drug conjugates (ADCs) are one of the fastest growing classes of oncology therapeutics. After half a century of research, the approvals of brentuximab vedotin (in 2011) and trastuzumab emtansine (in 2013) have paved the way for ongoing clinical trials that are evaluating more than 60 further ADC candidates. The limited success of first-generation ADCs (developed in the early 2000s) informed strategies to bring second-generation ADCs to the market, which have higher levels of cytotoxic drug conjugation, lower levels of naked antibodies and more-stable linkers between the drug and the antibody. Furthermore, lessons learned during the past decade are now being used in the development of third-generation ADCs. In this Review, we discuss strategies to select the best target antigens as well as suitable cytotoxic drugs; the design of optimized linkers; the discovery of bioorthogonal conjugation chemistries; and toxicity issues. The selection and engineering of antibodies for site-specific drug conjugation, which will result in higher homogeneity and increased stability, as well as the quest for new conjugation chemistries and mechanisms of action, are priorities in ADC research.
International Journal of Cancer | 2005
Liliane Goetsch; Alexandra Gonzalez; Olivier Leger; Alain Beck; Petrus J. Pauwels; Jean François Haeuw; Nathalie Corvaia
Interaction of insulin‐like growth factor receptor I (IGF‐IR) with its ligands has been reported to induce cell proliferation, transformation and blockade of cell apoptotic functions. IGF‐IR is overexpressed on numerous tumor cell types and its blockade could be of importance for anti‐cancer therapy. We have generated a humanized anti‐IGF‐IR antibody h7C10 that blocks in vitro IGF‐I and IGF‐II‐induced cell proliferation of MCF‐7 breast cancer cells. Analysis of the IGF‐I transduction cascade demonstrated that the humanized anti‐IGF‐IR antibody and its murine parental form block IGF‐I‐induced tyrosine phosphorylation, both its β‐chain and IRS‐1 tyrosine phosphorylation. This presumably leads to cell cycle arrest and, consequently, growth inhibition. Treatment of nude mice bearing either human breast cancer cells (MCF‐7) or non small lung cancer cells (A549) with h7C10, or its murine parental form 7C10, inhibited significantly tumor growth. An almost complete inhibition of A549 tumor growth was observed when mice were treated with the anti‐IGF‐IR antibody combined with either a chemotherapeutic agent, Vinorelbine or an anti‐epidermal growth factor receptor (EGFR) antibody, 225. Combined therapy prolonged significantly the life span of mice in an orthotopic in vivo model of A549; the combination of the anti‐IGF‐IR antibody with an anti‐EGFR antibody was superior to the Vinorelbine combination. The present results indicate that the humanized anti‐IGF‐IR antibody h7C10 has a great potential for cancer therapy when combined with either a chemotherapeutic agent or an antibody that targets other growth factor receptors, such as the epidermal growth factor receptor.
Current Pharmaceutical Biotechnology | 2008
Alain Beck; Elsa Wagner-Rousset; Marie-Claire Bussat; Maryline Lokteff; Christine Klinguer-Hamour; Jean-François Haeuw; Liliane Goetsch; Thierry Wurch; Alain Van Dorsselaer; Nathalie Corvaia
Monoclonal antibodies (MAbs) are the fastest growing class of human pharmaceuticals. More than 20 MAbs have been approved and several hundreds are in clinical trials in various therapeutic indications including oncology, inflammatory diseases, organ transplantation, cardiology, viral infection, allergy, and tissue growth and repair. Most of the current therapeutic antibodies are humanized or human Immunoglobulins (IgGs) and are produced as recombinant glycoproteins in eukaryotic cells. Many alternative production systems and improved constructs are also being actively investigated. IgGs glycans represent only an average of around 3% of the total mass of the molecule. Despite this low percentage, particular glycoforms are involved in essential immune effector functions. On the other hand, glycoforms that are not commonly biosynthesized in human may be allergenic, immunogenic and accelerate the plasmatic clearance of the linked antibody. These glyco-variants have to be identified, controlled and limited for therapeutic uses. Glycosylation depends on multiple factors like production system, selected clonal population, manufacturing process and may be genetically or chemically engineered. The present account reviews the glycosylation patterns observed for the current approved therapeutic antibodies produced in mammalian cell lines, details classical and state-of-the-art analytical methods used for the characterization of glycoforms and discusses the expected benefits of manipulating the carbohydrate components of antibodies by bio- or chemical engineering as well as the expected advantages of alternative biotechnological production systems developed for new generation of therapeutic antibodies and Fc-fusion proteins.
Analytical Biochemistry | 2009
Josef Vlasak; Marie C. Bussat; Shiyi Wang; Elsa Wagner-Rousset; Mark Schaefer; Christine Klinguer-Hamour; Marc Kirchmeier; Nathalie Corvaia; Roxana Ionescu; Alain Beck
Despite technological advances, detection of deamidation in large proteins remains a challenge and the use of orthogonal methods is needed for unequivocal assignment. By a combination of cation-exchange separation, papain digestion, and a panel of mass spectrometry techniques we identified asparagine deamidation in light chain complementarity determining region 1 (CDR1) of a humanized IgG1 monoclonal antibody. The reaction yields both Asp and isoAsp, which were assigned by Edman degradation and by isoAsp detection using protein isoaspartate methyltransferase. The deamidated antibody variants were less potent in antigen binding compared to the nondegraded antibody. Changes in near-UV CD spectra, susceptibility to papain cleavage in an adjacent CDR2 loop, and the tendency of the newly formed isoAsp to undergo isomerization suggest local perturbations in the structure of the isoAsp-containing antibody.
Virology | 2003
H. Plotnicky; Dominique Cyblat-Chanal; Jean-Pierre Aubry; F. Derouet; C. Klinguer-Hamour; Alain Beck; Jean-Yves Bonnefoy; Nathalie Corvaia
The protective efficacy of the influenza matrix protein epitope 58-66 (called M1), recognized in the context of human HLA-A2 molecules, was evaluated in a HLA-A2/K(b) transgenic mouse model of lethal influenza infection. Repeated subcutaneous immunizations with M1 increased the percentage of survival. This effect was mediated by T cells since protection was abolished following in vivo depletion of all T lymphocytes, CD8(+), or CD4(+) T cells. The survival correlated with the detection of memory CD8(+) splenocytes able to proliferate in vitro upon stimulation with M1 and to bind M1-loaded HLA-A2 dimers, as well as with M1-specific T cells in the lungs, which were directly cytotoxic to influenza-infected cells following influenza challenge. These results demonstrated for the first time that HLA-A2-restricted cytotoxic T cells specific for the major immunodominant influenza matrix epitope are protective against the infection. They encourage further in vivo evaluation of T cell epitopes recognized in the context of human MHC molecules.
The Journal of Infectious Diseases | 2001
Ultan F. Power; Thien Ngoc Nguyen; Edwin Rietveld; Rik L. de Swart; Jan Groen; Albert D. M. E. Osterhaus; Ronald de Groot; Nathalie Corvaia; Alain Beck; Nancy Bouveret-le-Cam; Jean-Yves Bonnefoy
A novel recombinant respiratory syncytial virus (RSV) subunit vaccine, designated BBG2Na, was administered to 108 healthy adults randomly assigned to receive 10, 100, or 300 microg of BBG2Na in aluminum phosphate or saline placebo. Each subject received 1, 2, or 3 intramuscular injections of the assigned dose at monthly intervals. Local and systemic reactions were mild, and no evidence of harmful properties of BBG2Na was reported. The highest ELISA and virus-neutralizing (VN) antibody responses were evident in the 100- and 300-microg groups; second or third injections provided no significant boosts against RSV-derived antigens. BBG2Na induced > or 2-fold and > or =4-fold increases in G2Na-specific ELISA units in up to 100% and 57% of subjects, respectively; corresponding RSV-A-specific responses were 89% and 67%. Furthermore, up to 71% of subjects had > or =2-fold VN titer increases. Antibody responses to 2 murine lung protective epitopes were also highly boosted after vaccination. Therefore, BBG2Na is safe, well tolerated, and highly immunogenic in RSV-seropositive adults.
Analytical Chemistry | 2014
François Debaene; Amandine Bœuf; Elsa Wagner-Rousset; Olivier Colas; Daniel Ayoub; Nathalie Corvaia; Alain Van Dorsselaer; Alain Beck; Sarah Cianférani
Antibody drug conjugates (ADCs) are macromolecules composed of cytotoxic drugs covalently attached via a conditionally stable linker to monoclonal antibodies (mAbs). ADCs are among the most promising next generation of empowered mAbs foreseen to treat cancers. Compared to naked mAbs, ADCs have an increased level of complexity as the heterogeneity of conjugation cumulates with the inherent microvariability of the biomolecule. An increasing need underlying ADCs development and optimization is to improve its analytical and bioanalytical characterization by assessing three main ADC quality attributes: drug distribution, amount of naked antibody, and average drug to antibody ratio (DAR). Here, the analytical potential of native mass spectrometry (MS) and native ion mobility MS (IM-MS) is compared to hydrophobic interaction chromatography (HIC), the reference method for quality control of interchain cysteinyl-linked ADCs. Brentuximab vedotin, first in class and gold standard, was chosen for a proof of principle. High resolution native MS provided accurate mass measurement (<30 ppm) of intact ADCs together with average DAR and drug distribution, confirming the unique ability of native MS for simultaneous detection of mixtures of covalent and noncovalent products. Native IM-MS was next used for the first time to characterize an ADC. IM-MS evidenced ADC multiple drug loading, collisional cross sections measurement of each payload species attesting slight conformational changes. A semiquantitative interpretation of IM-MS data was developed to directly extrapolate average DAR and DAR distribution. Additionally, HIC fractions were collected and analyzed by native MS and IM-MS, assessing the interpretation of each HIC peak. Altogether, our results illustrate how native MS and IM-MS can rapidly assess ADC structural heterogeneity and how easily these methods can be implemented into MS workflows for in-depth ADC analytical characterization.
Journal of Chromatography B | 2008
Elsa Wagner-Rousset; Audrey Bednarczyk; Marie-Claire Bussat; Olivier Colas; Nathalie Corvaia; Christine Schaeffer; Alain Van Dorsselaer; Alain Beck
Glycosylation which plays a crucial role in the pharmacological properties of therapeutic monoclonal antibodies (MAbs) is influenced by several factors like production systems, selected clonal population and manufacturing processes. Efficient analytical methods are therefore required in order to characterize glycosylation at different stages of MAbs discovery and production. Three mass spectrometry (MS)-based strategies were compared to analyze N-glycosylation of MAbs either expressed in murine myeloma (NS0) or Chinese Hamster Ovary (CHO) cell lines, the two current main production systems used for therapeutic MAbs. First a top-down approach was used on intact and reduced MAbs by liquid chromatography coupled to an electrospray ionization-time of flight mass spectrometer (LC-ESI-TOF), which provided fast and accurate profiles of MAbs glycosylation patterns for routine controls. Secondly, after digestion of the antibody with the peptide N-glycosidase F (PNGase F) enzyme, released N-linked glycans were directly analyzed by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) without any prior derivatization, which gave precise details on the structure of the most abundant glycoforms. Finally, a bottom-up approach on tryptic glycopeptides using a nanoLC-Chip-MS/MS ion trap (IT) system equipped with a graphitized carbon column was investigated. Data were compared to those obtained with a more classical C18 reversed phase column showing that this last method is well suited to detect low abundant glycoforms and to provide in one shot information regarding both the oligosaccharide structure and the amino acid sequence of its peptide moiety.
mAbs | 2014
Elsa Wagner-Rousset; Marie-Claire Janin-Bussat; Olivier Colas; Melissa Excoffier; Daniel Ayoub; Jean-François Haeuw; Ian Rilatt; Michel Perez; Nathalie Corvaia; Alain Beck
Here we report the design and production of an antibody-fluorophore conjugate (AFC) as a non-toxic model of an antibody-drug conjugate (ADC). This AFC is based on the conjugation of dansyl sulfonamide ethyl amine (DSEA)-linker maleimide on interchain cysteines of trastuzumab used as a reference antibody. The resulting AFC was first characterized by routine analytical methods (SEC, SDS-PAGE, CE-SDS, HIC and native MS), resulting in similar chromatograms, electropherograms and mass spectra to those reported for hinge Cys-linked ADCs. IdeS digestion of the AFC was then performed, followed by reduction and analysis by liquid chromatography coupled to mass spectrometry analysis. Dye loading and distribution on light chain and Fd fragments were calculated, as well as the average dye to antibody ratio (DAR) for both monomeric and multimeric species. In addition, by analyzing the Fc fragment in the same run, full glyco-profiling and demonstration of the absence of additional conjugation was easily achieved. As for naked antibodies and Fc-fusion proteins, IdeS proteolytic digestion may rapidly become a reference analytical method at all stages of ADC discovery, preclinical and clinical development. The method can be routinely used for comparability assays, formulation, process scale-up and transfer, and to define critical quality attributes in a quality-by-design approach.