Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Pamir is active.

Publication


Featured researches published by Nathalie Pamir.


PLOS ONE | 2012

Unique Proteomic Signatures Distinguish Macrophages and Dendritic Cells

Lev Becker; Ning Chun Liu; Michelle M. Averill; Wei Yuan; Nathalie Pamir; YuFeng Peng; Angela Irwin; Xiaoyun Fu; Karin E. Bornfeldt; Jay W. Heinecke

Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs) that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.


Endocrinology | 2009

Receptors for Tumor Necrosis Factor-α Play a Protective Role against Obesity and Alter Adipose Tissue Macrophage Status

Nathalie Pamir; Timothy S. McMillen; Karl J. Kaiyala; Michael W. Schwartz; Renee C. LeBoeuf

TNF-alpha signals through two receptors, TNFR1 and TNFR2. Our goals were: 1) determine the role of TNFRs in obesity and metabolic disease and 2) investigate whether TNFRs contribute to the link between obesity and adipose tissue macrophage infiltration and polarization. R1(-/-)R2(-/-) (RKO) and wild-type (WT) mice were fed standard chow or a high-fat/high-sucrose diet (HFHS) over 14 wk. Body composition, food intake, and energy expenditure were measured. Oral glucose tolerance and insulin sensitivity tests assessed glucose homeostasis. Adipose tissue and systemic inflammatory status were evaluated by quantifying plasma adipokine levels and macrophage-specific gene expression in fat. RKO mice were heavier (10%) and fatter (18%) than WT controls at 4 wk of age and were 26% heavier and 50% fatter than WT after 14 wk of HFHS diet feeding. Age- and diet-adjusted 24-h oxygen consumption, activity, and respiratory exchange ratio were significantly reduced in RKO mice. Obese RKO mice were markedly insulin resistant, suggesting that intact TNFR signaling is not required for the effect of obesity to impair glucose metabolism. Adipose tissue from HFHS-fed RKO mice exhibited increased macrophage infiltration, but compared with WT mice, macrophage phenotypic markers featured a predominance of antiinflammatory M2 over proinflammatory M1 cells. TNFRs play a physiological role to limit body weight and adiposity by modestly increasing metabolic rate and fatty acid oxidation, and they are required for obesity-induced activation of adipose tissue macrophages. Despite these effects, TNFRs are not required for obesity-induced insulin resistance.


Journal of Proteomics | 2015

Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics

Graziella E. Ronsein; Nathalie Pamir; Priska D. von Haller; Daniel S. Kim; Michael N. Oda; Gail P. Jarvik; Tomas Vaisar; Jay W. Heinecke

UNLABELLED High-density lipoprotein (HDL), a lipid nanoparticle containing many different low abundance proteins, is an attractive target for clinical proteomics because its compositional heterogeneity is linked to its cardioprotective effects. Selected reaction monitoring (SRM) is currently the method of choice for targeted quantification of proteins in such a complex biological matrix. However, model system studies suggest that parallel reaction monitoring (PRM) is more specific than SRM because many product ions can be used to confirm the identity of a peptide. We therefore compared PRM and SRM for their abilities to quantify proteins in HDL, using (15)N-labeled apolipoprotein A-I (HDLs most abundant protein) as the internal standard. PRM and SRM exhibited comparable linearity, dynamic range, precision, and repeatability for protein quantification of HDL. Moreover, the single internal standard protein performed as well as protein-specific peptide internal standards when quantifying 3 different proteins. Importantly, PRM and SRM yielded virtually identical quantitative results for 26 proteins in HDL isolated from 44 subjects. Because PRM requires less method development than SRM and is potentially more specific, our observations indicate that PRM in concert with a single isotope-labeled protein is a promising new strategy for quantifying HDL proteins in translational studies. BIOLOGICAL SIGNIFICANCE HDL, a complex matrix composed of lipids and proteins, is implicated in cardioprotection. Its cholesterol content correlates inversely with cardiovascular disease and it is the current metric to assess cardiovascular risk. However, the cholesterol content does not capture HDLs complexity and heterogeneity. Devising metrics that better capture HDLs cardioprotective effects, we developed an optimized method for quantification of HDL proteome, using PRM in concert with a single labeled protein as internal standard. The availability of a method that increases sample throughput without compromising the reproducibility, sensitivity, and accuracy could therefore point to better risk assessment for CVD or other diseases.


Clinical Chemistry | 2014

Quantification of HDL Particle Concentration by Calibrated Ion Mobility Analysis

Patrick M. Hutchins; Graziella E. Ronsein; Jeffrey S. Monette; Nathalie Pamir; Jake Wimberger; Yi He; G.M. Anantharamaiah; Daniel Seung Kim; Jane Ranchalis; Gail P. Jarvik; Tomas Vaisar; Jay W. Heinecke

BACKGROUND It is critical to develop new metrics to determine whether HDL is cardioprotective in humans. One promising approach is HDL particle concentration (HDL-P), the size and concentration of HDL in plasma. However, the 2 methods currently used to determine HDL-P yield concentrations that differ >5-fold. We therefore developed and validated an improved approach to quantify HDL-P, termed calibrated ion mobility analysis (calibrated IMA). METHODS HDL was isolated from plasma by ultracentrifugation, introduced into the gas phase with electrospray ionization, separated by size, and quantified by particle counting. We used a calibration curve constructed with purified proteins to correct for the ionization efficiency of HDL particles. RESULTS The concentrations of gold nanoparticles and reconstituted HDLs measured by calibrated IMA were indistinguishable from concentrations determined by orthogonal methods. In plasma of control (n = 40) and cerebrovascular disease (n = 40) participants, 3 subspecies of HDL were reproducibility measured, with an estimated total HDL-P of 13.4 (2.4) μmol/L. HDL-C accounted for 48% of the variance in HDL-P. HDL-P was significantly lower in participants with cerebrovascular disease (P = 0.002), and this difference remained significant after adjustment for HDL cholesterol concentrations (P = 0.02). CONCLUSIONS Calibrated IMA accurately determined the concentration of gold nanoparticles and synthetic HDL, strongly suggesting that the method could accurately quantify HDL particle concentration. The estimated stoichiometry of apolipoprotein A-I determined by calibrated IMA was 3-4 per HDL particle, in agreement with current structural models. Furthermore, HDL-P was associated with cardiovascular disease status in a clinical population independently of HDL cholesterol.


Endocrinology | 2014

Macrophage Metalloelastase (MMP12) Regulates Adipose Tissue Expansion, Insulin Sensitivity, and Expression of Inducible Nitric Oxide Synthase

Jung Ting Lee; Nathalie Pamir; Ning Chun Liu; Elizabeth A. Kirk; Michelle M. Averill; Lev Becker; Ilona Larson; Derek K. Hagman; Karen E. Foster-Schubert; Brian Van Yserloo; Karin E. Bornfeldt; Renee C. LeBoeuf; Mario Kratz; Jay W. Heinecke

Macrophage metalloelastase, a matrix metallopeptidase (MMP12) predominantly expressed by mature tissue macrophages, is implicated in pathological processes. However, physiological functions for MMP12 have not been described. Because mRNA levels for the enzyme increase markedly in adipose tissue of obese mice, we investigated the role of MMP12 in adipose tissue expansion and insulin resistance. In humans, MMP12 expression correlated positively and significantly with insulin resistance, TNF-α expression, and the number of CD14(+)CD206(+) macrophages in adipose tissue. MMP12 was the most abundant matrix metallopeptidase detected by proteomic analysis of conditioned medium of M2 macrophages and dendritic cells. In contrast, it was detected only at low levels in bone marrow derived macrophages and M1 macrophages. When mice received a high-fat diet, adipose tissue mass increased and CD11b(+)F4/80(+)CD11c(-) macrophages accumulated to a greater extent in MMP12-deficient (Mmp12(-/-)) mice than in wild-type mice (Mmp12(+/+)). Despite being markedly more obese, fat-fed Mmp12(-/-) mice were more insulin sensitive than fat-fed Mmp12(+/+) mice. Expression of inducible nitric oxide synthase (Nos2) by Mmp12(-/-) macrophages was significantly impaired both in vivo and in vitro, suggesting that MMP12 might mediate nitric oxide production during inflammation. We propose that MMP12 acts as a double-edged sword by promoting insulin resistance while combatting adipose tissue expansion.


Metabolism-clinical and Experimental | 2009

Overexpression of apolipoprotein A5 in mice is not protective against body weight gain and aberrant glucose homeostasis

Nathalie Pamir; Timothy S. McMillen; Yu-I Li; Ching Mei Lai; Howard Wong; Renee C. LeBoeuf

Apolipoprotein A5 (APOA5) is expressed primarily in the liver and modulates plasma triglyceride levels in mice and humans. Mice overexpressing APOA5 exhibit reduced plasma triglyceride levels. Because there is a tight association between plasma triglyceride concentration and traits of the metabolic syndrome, we used transgenic mice overexpressing human APOA5 to test the concept that these mice would be protected from diet-induced obesity and insulin resistance. Male and female transgenic and wild-type mice on the FVB/N genetic background were fed standard rodent chow or a diet rich in fat and sucrose for 18 weeks, during which time clinical phenotypes associated with obesity and glucose homeostasis were measured. We found that APOA5 transgenic (A5tg) mice were resistant to diet-induced changes in plasma triglyceride but not total cholesterol levels. Body weights were similar between the genotypes for females and males, although male A5tg mice showed a modest but significant increase in the relative size of inguinal fat pads. Although male A5tg mice showed a significantly increased ratio of plasma glucose to insulin, profiles of glucose clearance as evaluated after injections of glucose or insulin failed to reveal any differences between genotypes. Overall, our data showed that there was no advantage to responses to diet-induced obesity with chronic reduction of plasma triglyceride levels as mediated by overexpression of APOA5.


Journal of Lipid Research | 2016

Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway.

Nathalie Pamir; Patrick M. Hutchins; Graziella E. Ronsein; Tomas Vaisar; Catherine A. Reardon; Godfrey S. Getz; Aldons J. Lusis; Jay W. Heinecke

Cholesterol efflux capacity associates strongly and negatively with the incidence and prevalence of human CVD. We investigated the relationships of HDL’s size and protein cargo with its cholesterol efflux capacity using APOB-depleted serum and HDLs isolated from five inbred mouse strains with different susceptibilities to atherosclerosis. Like humans, mouse HDL carried >70 proteins linked to lipid metabolism, the acute-phase response, proteinase inhibition, and the immune system. HDL’s content of specific proteins strongly correlated with its size and cholesterol efflux capacity, suggesting that its protein cargo regulates its function. Cholesterol efflux capacity with macrophages strongly and positively correlated with retinol binding protein 4 (RBP4) and PLTP, but not APOA1. In contrast, ABCA1-specific cholesterol efflux correlated strongly with HDL’s content of APOA1, APOC3, and APOD, but not RBP4 and PLTP. Unexpectedly, APOE had a strong negative correlation with ABCA1-specific cholesterol efflux capacity. Moreover, the ABCA1-specific cholesterol efflux capacity of HDL isolated from APOE-deficient mice was significantly greater than that of HDL from wild-type mice. Our observations demonstrate that the HDL-associated APOE regulates HDL’s ABCA1-specific cholesterol efflux capacity. These findings may be clinically relevant because HDL’s APOE content associates with CVD risk and ABCA1 deficiency promotes unregulated cholesterol accumulation in human macrophages.


Journal of Biological Chemistry | 2015

Granulocyte/Macrophage Colony-stimulating Factor-dependent Dendritic Cells Restrain Lean Adipose Tissue Expansion.

Nathalie Pamir; Ning Chun Liu; Angela Irwin; Lev Becker; YuFeng Peng; Graziella E. Ronsein; Karin E. Bornfeldt; Jeremy S. Duffield; Jay W. Heinecke

Background: The role of myeloid cells in maintaining lean adipose tissue homeostasis is unclear. Results: Adipose tissue dendritic cells suppress normal adipose tissue expansion by secreting fibronectin and matrix metalloproteinase 12. Conclusion: Adipose tissue dendritic cells participate in maintaining normal adipose tissue homeostasis by preventing uncontrolled adipose tissue expansion. Significance: Under normal physiology, dendritic cells participate in adipose tissue development. The physiological roles of macrophages and dendritic cells (DCs) in lean white adipose tissue homeostasis have received little attention. Because DCs are generated from bone marrow progenitors in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF), we used GM-CSF-deficient (Csf2−/−) mice fed a low fat diet to test the hypothesis that adipose tissue DCs regulate the development of adipose tissue. At 4 weeks of age, Csf2−/− mice had 75% fewer CD45+Cd11b+Cd11c+MHCII+ F4/80− DCs in white adipose tissue than did wild-type controls. Furthermore, the Csf2−/− mice showed a 30% increase in whole body adiposity, which persisted to adulthood. Adipocytes from Csf2−/− mice were 50% larger by volume and contained higher levels of adipogenesis gene transcripts, indicating enhanced adipocyte differentiation. In contrast, adipogenesis/adipocyte lipid accumulation was inhibited when preadipocytes were co-cultured with CD45+Cd11b+Cd11c+MHCII+F4/80− DCs. Medium conditioned by DCs, but not by macrophages, also inhibited adipocyte lipid accumulation. Proteomic analysis revealed that matrix metalloproteinase 12 and fibronectin 1 were greatly enriched in the medium conditioned by DCs compared with that conditioned by macrophages. Silencing fibronectin or genetic deletion of matrix metalloproteinase 12 in DCs partially reversed the inhibition of adipocyte lipid accumulation. Our observations indicate that DCs residing in adipose tissue play a critical role in suppressing normal adipose tissue expansion.


Biochimica et Biophysica Acta | 2012

Obesity and weight loss result in increased adipose tissue ABCG1 expression in db/db mice.

Kimberly A. Edgel; Timothy S. McMillen; Hao Wei; Nathalie Pamir; Barbara Houston; Mark Caldwell; Phuong Oanh T Mai; John F. Oram; Chongren Tang; Renee C. LeBoeuf

The prevalence of obesity has reached epidemic proportions and is associated with several co-morbid conditions including diabetes, dyslipidemia, cancer, atherosclerosis and gallstones. Obesity is associated with low systemic inflammation and an accumulation of adipose tissue macrophages (ATMs) that are thought to modulate insulin resistance. ATMs may also modulate adipocyte metabolism and take up lipids released during adipocyte lipolysis and cell death. We suggest that high levels of free cholesterol residing in adipocytes are released during these processes and contribute to ATM activation and accumulation during obesity and caloric restriction. Db/db mice were studied for extent of adipose tissue inflammation under feeding conditions of ad libitum (AL) and caloric restriction (CR). The major finding was a marked elevation in epididymal adipose ABCG1 mRNA levels with obesity and CR (6-fold and 16-fold, respectively) over that seen for lean wild-type mice. ABCG1 protein was also elevated for CR as compared to AL adipose tissue. ABCG1 is likely produced by cholesterol loaded ATMs since this gene is not highly expressed in adipocytes and ABCG1 expression is sterol mediated. Our data supports the concept that metabolic changes in adipocytes due to demand lipolysis and cell death lead to cholesterol loading of ATMs. Based on finding cholesterol-loaded peritoneal leukocytes with elevated levels of ABCG1 in CR as compared to AL mice, we suggest that pathways for cholesterol trafficking out of adipose tissue involve ATM egress as well as ABCG1 mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).


American Journal of Physiology-endocrinology and Metabolism | 2012

Deficiency of lymphotoxin-α does not exacerbate high-fat diet-induced obesity but does enhance inflammation in mice.

Nathalie Pamir; Timothy S. McMillen; Kimberly A. Edgel; Francis Kim; Renee C. LeBoeuf

Lymphotoxin-α (LTα) is secreted by lymphocytes and acts through tumor necrosis factor-α receptors and the LTβ receptor. Our goals were to determine whether LT has a role in obesity and investigate whether LT contributes to the link between obesity and adipose tissue lymphocyte accumulation. LT deficient (LT(-/-)) and wild-type (WT) mice were fed standard pelleted rodent chow or a high-fat/high-sucrose diet (HFHS) for 13 wk. Body weight, body composition, and food intake were measured. Glucose tolerance was assessed. Systemic and adipose tissue inflammatory statuses were evaluated by quantifying plasma adipokine levels and tissue macrophage and T cell-specific gene expression in abdominal fat. LT(-/-) mice were smaller (20%) and leaner (25%) than WT controls after 13 wk of HFHS diet feeding. LT(-/-) mice showed improved glucose tolerance, suggesting that, in WT mice, LT may impair glucose metabolism. Surprisingly, adipose tissue from rodent chow- and HFHS-fed LT(-/-) mice exhibited increased T lymphocyte and macrophage infiltration compared with WT mice. Despite the fact that LT(-/-) mice exhibited an enhanced inflammatory status at the systemic and tissue level even when fed rodent chow, they were protected from enhanced diet-induced obesity and insulin resistance. Thus, LT contributes to body weight and adiposity and is required to modulate the accumulation of immune cells in adipose tissue.

Collaboration


Dive into the Nathalie Pamir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Vaisar

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge