Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomas Vaisar is active.

Publication


Featured researches published by Tomas Vaisar.


Clinical Chemistry | 2012

Multiple-Reaction Monitoring–Mass Spectrometric Assays Can Accurately Measure the Relative Protein Abundance in Complex Mixtures

Andrew N. Hoofnagle; Jessica O. Becker; Michael N. Oda; Giorgio Cavigiolio; Philip S. Mayer; Tomas Vaisar

BACKGROUNDnMass spectrometric assays could potentially replace protein immunoassays in many applications. Previous studies have demonstrated the utility of liquid chromatography-multiple-reaction monitoring-mass spectrometry (LC-MRM/MS) for the quantification of proteins in biological samples, and many examples of the accuracy of these approaches to quantify supplemented analytes have been reported. However, a direct comparison of multiplexed assays that use LC-MRM/MS with established immunoassays to measure endogenous proteins has not been reported.nnnMETHODSnWe purified HDL from the plasma of 30 human donors and used label-free shotgun proteomics approaches to analyze each sample. We then developed 2 different isotope-dilution LC-MRM/MS 6-plex assays (for apoliporoteins A-I, C-II, C-III, E, B, and J): 1 assay used stable isotope-labeled peptides and the other used stable isotope-labeled apolipoprotein A-I (an abundant HDL protein) as an internal standard to control for matrix effects and mass spectrometer performance. The shotgun and LC-MRM/MS assays were then compared with commercially available immunoassays for each of the 6 analytes.nnnRESULTSnRelative quantification by shotgun proteomics approaches correlated poorly with the 6 protein immunoassays. In contrast, the isotope dilution LC-MRM/MS approaches showed correlations with immunoassays of r = 0.61-0.96. The LC-MRM/MS approaches had acceptable reproducibility (<13% CV) and linearity (r ≥0.99). Strikingly, a single protein internal standard applied to all proteins performed as well as multiple protein-specific peptide internal standards.nnnCONCLUSIONSnBecause peak area ratios measured in multiplexed LC-MRM/MS assays correlate well with immunochemical measurements and have acceptable operating characteristics, we propose that LC-MRM/MS could be used to replace immunoassays in a variety of settings.


Journal of Lipid Research | 2015

Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity

Tomas Vaisar; Chongren Tang; Ilona Babenko; Patrick M. Hutchins; Jake Wimberger; Jay W. Heinecke

Recent studies demonstrate that HDL’s ability to promote cholesterol efflux from macrophages associates strongly with cardioprotection in humans independently of HDL-cholesterol (HDL-C) and apoA-I, HDL’s major protein. However, the mechanisms that impair cholesterol efflux capacity during vascular disease are unclear. Inflammation, a well-established risk factor for cardiovascular disease, has been shown to impair HDL’s cholesterol efflux capacity. We therefore tested the hypothesis that HDL’s impaired efflux capacity is mediated by specific changes of its protein cargo. Humans with acute inflammation induced by low-level endotoxin had unchanged HDL-C levels, but their HDL-C efflux capacity was significantly impaired. Proteomic analyses demonstrated that HDL’s cholesterol efflux capacity correlated inversely with HDL content of serum amyloid A (SAA)1 and SAA2. In mice, acute inflammation caused a marked impairment of HDL-C efflux capacity that correlated with a large increase in HDL SAA. In striking contrast, the efflux capacity of mouse inflammatory HDL was preserved with genetic ablation of SAA1 and SAA2. Our observations indicate that the inflammatory impairment of HDL-C efflux capacity is due in part to SAA-mediated remodeling of HDL’s protein cargo.


Journal of Proteomics | 2015

Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics

Graziella E. Ronsein; Nathalie Pamir; Priska D. von Haller; Daniel S. Kim; Michael N. Oda; Gail P. Jarvik; Tomas Vaisar; Jay W. Heinecke

UNLABELLEDnHigh-density lipoprotein (HDL), a lipid nanoparticle containing many different low abundance proteins, is an attractive target for clinical proteomics because its compositional heterogeneity is linked to its cardioprotective effects. Selected reaction monitoring (SRM) is currently the method of choice for targeted quantification of proteins in such a complex biological matrix. However, model system studies suggest that parallel reaction monitoring (PRM) is more specific than SRM because many product ions can be used to confirm the identity of a peptide. We therefore compared PRM and SRM for their abilities to quantify proteins in HDL, using (15)N-labeled apolipoprotein A-I (HDLs most abundant protein) as the internal standard. PRM and SRM exhibited comparable linearity, dynamic range, precision, and repeatability for protein quantification of HDL. Moreover, the single internal standard protein performed as well as protein-specific peptide internal standards when quantifying 3 different proteins. Importantly, PRM and SRM yielded virtually identical quantitative results for 26 proteins in HDL isolated from 44 subjects. Because PRM requires less method development than SRM and is potentially more specific, our observations indicate that PRM in concert with a single isotope-labeled protein is a promising new strategy for quantifying HDL proteins in translational studies.nnnBIOLOGICAL SIGNIFICANCEnHDL, a complex matrix composed of lipids and proteins, is implicated in cardioprotection. Its cholesterol content correlates inversely with cardiovascular disease and it is the current metric to assess cardiovascular risk. However, the cholesterol content does not capture HDLs complexity and heterogeneity. Devising metrics that better capture HDLs cardioprotective effects, we developed an optimized method for quantification of HDL proteome, using PRM in concert with a single labeled protein as internal standard. The availability of a method that increases sample throughput without compromising the reproducibility, sensitivity, and accuracy could therefore point to better risk assessment for CVD or other diseases.


Current Vascular Pharmacology | 2012

PROTEOMICS INVESTIGATIONS OF HDL. CHALLENGES AND PROMISE

Tomas Vaisar

High density lipoprotein (HDL) is recognized as the major negative risk factor of cardiovascular disease and number of anti-atherogenic functions has been ascribed to HDL. HDL is an assembly of a neutral lipid core and an outer shell consisting of polar lipids and proteins. It has been defined many different ways based on various distinct properties including density flotation, protein composition, molecular size, and electrophoretic migration. Overall the studies characterizing HDL clearly demonstrate that it is a complex heterogeneous mixture of particles. Furthermore several studies convincingly demonstrated that certain populations of HDL particles have a distinct functionality suggesting that HDL may serve as a platform for assembly of protein complexes with very specific biological functions. Indeed recent proteomics studies described over 100 proteins associated with HDL. Here we review approaches to isolation and proteomic analysis of HDL and discuss potential problems associated with isolation methods which may confound our understanding of the relation of the HDL composition and its biological function.


Clinical Chemistry | 2014

Quantification of HDL Particle Concentration by Calibrated Ion Mobility Analysis

Patrick M. Hutchins; Graziella E. Ronsein; Jeffrey S. Monette; Nathalie Pamir; Jake Wimberger; Yi He; G.M. Anantharamaiah; Daniel Seung Kim; Jane Ranchalis; Gail P. Jarvik; Tomas Vaisar; Jay W. Heinecke

BACKGROUNDnIt is critical to develop new metrics to determine whether HDL is cardioprotective in humans. One promising approach is HDL particle concentration (HDL-P), the size and concentration of HDL in plasma. However, the 2 methods currently used to determine HDL-P yield concentrations that differ >5-fold. We therefore developed and validated an improved approach to quantify HDL-P, termed calibrated ion mobility analysis (calibrated IMA).nnnMETHODSnHDL was isolated from plasma by ultracentrifugation, introduced into the gas phase with electrospray ionization, separated by size, and quantified by particle counting. We used a calibration curve constructed with purified proteins to correct for the ionization efficiency of HDL particles.nnnRESULTSnThe concentrations of gold nanoparticles and reconstituted HDLs measured by calibrated IMA were indistinguishable from concentrations determined by orthogonal methods. In plasma of control (n = 40) and cerebrovascular disease (n = 40) participants, 3 subspecies of HDL were reproducibility measured, with an estimated total HDL-P of 13.4 (2.4) μmol/L. HDL-C accounted for 48% of the variance in HDL-P. HDL-P was significantly lower in participants with cerebrovascular disease (P = 0.002), and this difference remained significant after adjustment for HDL cholesterol concentrations (P = 0.02).nnnCONCLUSIONSnCalibrated IMA accurately determined the concentration of gold nanoparticles and synthetic HDL, strongly suggesting that the method could accurately quantify HDL particle concentration. The estimated stoichiometry of apolipoprotein A-I determined by calibrated IMA was 3-4 per HDL particle, in agreement with current structural models. Furthermore, HDL-P was associated with cardiovascular disease status in a clinical population independently of HDL cholesterol.


Circulation Research | 2013

Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype

Will S. Driscoll; Tomas Vaisar; Jingjing Tang; Carole L. Wilson; Elaine W. Raines

Rationale: Apoptotic cell phagocytosis (efferocytosis) is mediated by specific receptors and is essential for resolution of inflammation. In chronic inflammation, apoptotic cell clearance is dysfunctional and soluble levels of several apoptotic cell receptors are elevated. Reports have identified proteolytic cleavage as a mechanism capable of releasing soluble apoptotic cell receptors, but the functional implications of their proteolysis are unclear. Objective: To test the hypothesis that ADAM17-mediated cleavage of apoptotic cell receptors limits efferocytosis in vivo. Methods and Results: In vivo comparison of macrophage efferocytosis in wild-type and Adam17-null hematopoietic chimeras demonstrates that ADAM17 deficiency leads to a 60% increase in efferocytosis and an enhanced anti-inflammatory phenotype in a model of peritonitis. In vitro uptake of phosphatidylserine liposomes identifies the dual-pass apoptotic cell receptor CD36 as a major contributor to enhanced efferocytosis, and CD36 surface levels are elevated on macrophages from Adam17-null mice. Further, temporal elevation of CD36 expression with inflammation may also contribute to its impact. Soluble CD36 from macrophage-conditioned media comprises 2 species based on Western blotting, and mass spectrometry identifies 3 N-terminal peptides that represent probable cleavage sites. Levels of soluble CD36 are decreased in Adam17-null conditioned media, providing evidence for involvement of ADAM17 in CD36 cleavage. Importantly, enhanced efferocytosis in vivo by macrophages lacking ADAM17 is CD36 dependent and accelerates macrophage clearance from the peritoneum, thus promoting resolution of inflammation and highlighting the impact of increased apoptotic cell uptake. Conclusions: Our studies demonstrate the importance of ADAM17-mediated proteolysis for in vivo efferocytosis regulation and suggest a possible mechanistic link between chronic inflammation and defective efferocytosis.


Journal of Clinical Investigation | 2016

Serum amyloid A impairs the antiinflammatory properties of HDL

Chang Yeop Han; Chongren Tang; Myriam E. Guevara; Hao Wei; Tomasz Wietecha; Baohai Shao; Savitha Subramanian; Mohamed Omer; Shari Wang; Kevin D. O’Brien; Santica M. Marcovina; Thomas N. Wight; Tomas Vaisar; Maria C. de Beer; Frederick C. de Beer; William R. A. Osborne; Keith B. Elkon; Alan Chait

HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface-associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2016

Niacin Therapy Increases High-Density Lipoprotein Particles and Total Cholesterol Efflux Capacity But Not ABCA1-Specific Cholesterol Efflux in Statin-Treated Subjects

Graziella E. Ronsein; Patrick M. Hutchins; Daniel Isquith; Tomas Vaisar; Xue Qiao Zhao; Jay W. Heinecke

Objective— We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels. Approach— In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)–specific cholesterol efflux capacity. Results— Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy. Conclusions— Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL.


Journal of Lipid Research | 2012

Testosterone replacement in hypogonadal men alters the HDL proteome but not HDL cholesterol efflux capacity

Katya B. Rubinow; Tomas Vaisar; Chongren Tang; Alvin M. Matsumoto; Jay W. Heinecke; Stephanie T. Page

The effects of androgens on cardiovascular disease (CVD) risk in men remain unclear. To better characterize the relationship between androgens and HDL, we investigated the effects of testosterone replacement on HDL protein composition and serum HDL-mediated cholesterol efflux in hypogonadal men. Twenty-three older hypogonadal men (ages 51–83, baseline testosterone < 280 ng/dl) were administered replacement testosterone therapy (1% transdermal gel) with or without the 5α-reductase inhibitor dutasteride. At baseline and after three months of treatment, we determined fasting lipid concentrations, HDL protein composition, and the cholesterol efflux capacity of serum HDL. Testosterone replacement did not affect HDL cholesterol (HDL-C) concentrations but conferred significant increases in HDL-associated paraoxonase 1 (PON1) and fibrinogen α chain (FGA) (P = 0.022 and P = 0.023, respectively) and a decrease in apolipoprotein A-IV (apoA-IV) (P = 0.016). Exogenous testosterone did not affect the cholesterol efflux capacity of serum HDL. No differences were observed between men who received testosterone alone and those who also received dutasteride. Testosterone replacement in older hypogonadal men alters the protein composition of HDL but does not significantly change serum HDL-mediated cholesterol efflux. These effects appear independent of testosterone conversion to dihydrotestosterone. Further research is needed to determine how changes in HDL protein content affect CVD risk in men.


Journal of Proteome Research | 2015

Paraoxonase-3 is depleted from the high-density lipoproteins of autoimmune disease patients with subclinical atherosclerosis.

Judit Marsillach; Jessica O. Becker; Tomas Vaisar; Bevra H. Hahn; John D. Brunzell; Clement E. Furlong; Ian H. de Boer; Maureen McMahon; Andrew N. Hoofnagle

Patients with autoimmune diseases have a significantly increased risk of developing cardiovascular disease. In disease, high-density lipoprotein (HDL) particles lose their anti-inflammatory and antioxidant properties and become dysfunctional. The purpose of this study was to test the hypothesis that alterations in the HDL proteomic profile are associated with subclinical atherosclerosis and HDL dysfunction in patients with autoimmune diseases such as systemic lupus erythematosus (SLE) and type 1 diabetes. Targeted proteomics was used to quantify the relative abundance of 18 proteins in HDL from SLE patients with and without atherosclerotic plaque detectable by carotid ultrasound. Changes in the proteomic profile were compared against the in vitro ability of HDL to protect against lipid oxidation. The same proteins were quantified in HDL from patients with type 1 diabetes with or without coronary artery calcification as determined by computed tomography. In each population, paraoxonase-3 (PON3), a potent antioxidant protein, was depleted from the HDL of patients with subclinical atherosclerosis. PON3 expression in HDL was positively correlated with HDL antioxidant function. These results suggest that PON3 may be an important protein in preventing atherosclerosis and highlight the importance of antioxidant proteins in the prevention of atherosclerosis in vivo.

Collaboration


Dive into the Tomas Vaisar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chongren Tang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gail P. Jarvik

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jake Wimberger

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Nathalie Pamir

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge