Nathalie Sol-Foulon
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathalie Sol-Foulon.
PLOS Pathogens | 2007
Marion Sourisseau; Clémentine Schilte; Nicoletta Casartelli; Céline Trouillet; Florence Guivel-Benhassine; Dominika Rudnicka; Nathalie Sol-Foulon; Karin Le Roux; Marie-Christine Prévost; Hafida Fsihi; Marie-Pascale Frenkiel; Fabien Blanchet; Philippe V. Afonso; Pierre-Emmanuel Ceccaldi; Simona Ozden; Antoine Gessain; Isabelle Schuffenecker; Bruno Verhasselt; Alessia Zamborlini; Ali Saïb; Félix A. Rey; Fernando Arenzana-Seisdedos; Philippe Desprès; Alain Michault; Matthew L. Albert; Olivier Schwartz
An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host.
Journal of Virology | 2007
Marion Sourisseau; Nathalie Sol-Foulon; Françoise Porrot; Fabien Blanchet; Olivier Schwartz
ABSTRACT Cell-to-cell viral transfer facilitates the spread of lymphotropic retroviruses such as human immunodeficiency virus (HIV) and human T-cell leukemia virus (HTLV), likely through the formation of “virological synapses” between donor and target cells. Regarding HIV replication, the importance of cell contacts has been demonstrated, but this phenomenon remains only partly characterized. In order to alter cell-to-cell HIV transmission, we have maintained cultures under continuous gentle shaking and followed viral replication in this experimental system. In lymphoid cell lines, as well as in primary lymphocytes, viral replication was dramatically reduced in shaken cultures. To document this phenomenon, we have developed an assay to assess the relative contributions of free and cell-associated virions in HIV propagation. Acutely infected donor cells were mixed with carboxyfluorescein diacetate succinimidyl ester-labeled lymphocytes as targets, and viral production was followed by measuring HIV Gag expression at different time points by flow cytometry. We report that cellular contacts drastically enhance productive viral transfer compared to what is seen with infection with free virus. Productive cell-to-cell viral transmission required fusogenic viral envelope glycoproteins on donor cells and adequate receptors on targets. Only a few syncytia were observed in this coculture system. Virus release from donor cells was unaffected when cultures were gently shaken, whereas virus transfer to recipient cells was severely impaired. Altogether, these results indicate that cell-to-cell transfer is the predominant mode of HIV spread and help to explain why this virus replicates so efficiently in lymphoid organs.
Immunity | 2002
Nathalie Sol-Foulon; Arnaud Moris; Cinzia Nobile; Claire Boccaccio; Anneke Engering; Jean-Pierre Abastado; Jean-Michel Heard; Yvette van Kooyk; Olivier Schwartz
DC-SIGN, a dendritic cell (DC)-specific lectin, mediates clustering of DCs with T lymphocytes, a crucial event in the initiation of immune responses. DC-SIGN also binds HIV envelope glycoproteins, allowing efficient virus capture by DCs. We show here that DC-SIGN surface levels are upregulated in HIV-1-infected DCs. This process is caused by the viral protein Nef, which acts by inhibiting DC-SIGN endocytosis. Upregulation of DC-SIGN at the cell surface dramatically increases clustering of DCs with T lymphocytes and HIV-1 transmission. These results provide new insights into how HIV-1 spreads from DCs to T lymphocytes and manipulates immune responses. They help explain how Nef may act as a virulence factor in vivo.
Journal of Virology | 2009
Dominika Rudnicka; Jérôme Feldmann; Françoise Porrot; Steve Wietgrefe; Stéphanie Guadagnini; Marie Christine Prevost; Jérôme Estaquier; Ashley T. Haase; Nathalie Sol-Foulon; Olivier Schwartz
ABSTRACT Human immunodeficiency virus type 1 (HIV-1) efficiently propagates through cell-to-cell contacts, which include virological synapses (VS), filopodia, and nanotubes. Here, we quantified and characterized further these diverse modes of contact in lymphocytes. We report that viral transmission mainly occurs across VS and through “polysynapses,” a rosette-like structure formed between one infected cell and multiple adjacent recipients. Polysynapses are characterized by simultaneous HIV clustering and transfer at multiple membrane regions. HIV Gag proteins often adopt a ring-like supramolecular organization at sites of intercellular contacts and colocalize with CD63 tetraspanin and raft components GM1, Thy-1, and CD59. In donor cells engaged in polysynapses, there is no preferential accumulation of Gag proteins at contact sites facing the microtubule organizing center. The LFA-1 adhesion molecule, known to facilitate viral replication, enhances formation of polysynapses. Altogether, our results reveal an underestimated mode of viral transfer through polysynapses. In HIV-infected individuals, these structures, by promoting concomitant infection of multiple targets in the vicinity of infected cells, may facilitate exponential viral growth and escape from immune responses.
The EMBO Journal | 2007
Nathalie Sol-Foulon; Marion Sourisseau; Françoise Porrot; Maria-Isabel Thoulouze; Céline Trouillet; Cinzia Nobile; Fabien Blanchet; Vincenzo Di Bartolo; Nelly Noraz; Naomi Taylor; Andrés Alcover; Claire Hivroz; Olivier Schwartz
HIV efficiently spreads in lymphocytes, likely through virological synapses (VSs). These cell–cell junctions share some characteristics with immunological synapses, but cellular proteins required for their constitution remain poorly characterized. We have examined here the role of ZAP‐70, a key kinase regulating T‐cell activation and immunological synapse formation, in HIV replication. In lymphocytes deficient for ZAP‐70, or expressing a kinase‐dead mutant of the protein, HIV replication was strikingly delayed. We have characterized further this replication defect. ZAP‐70 was dispensable for the early steps of viral cycle, from entry to expression of viral proteins. However, in the absence of ZAP‐70, intracellular Gag localization was impaired. ZAP‐70 was required in infected donor cells for efficient cell‐to‐cell HIV transmission to recipients and for formation of VSs. These results bring novel insights into the links that exist between T‐cell activation and HIV spread, and suggest that HIV usurps components of the immunological synapse machinery to ensure its own spread through cell‐to‐cell contacts.
Journal of Virology | 2010
Cinzia Nobile; Dominika Rudnicka; Milena Hasan; Nathalie Aulner; Françoise Porrot; Christophe Machu; Olivier Renaud; Marie-Christine Prévost; Claire Hivroz; Olivier Schwartz; Nathalie Sol-Foulon
ABSTRACT The HIV-1 Nef protein is a pathogenic factor modulating the behavior of infected cells. Nef induces actin cytoskeleton changes and impairs cell migration toward chemokines. We further characterized the morphology, cytoskeleton dynamics, and motility of HIV-1-infected lymphocytes. By using scanning electron microscopy, confocal immunofluorescence microscopy, and ImageStream technology, which combines flow cytometry and automated imaging, we report that HIV-1 induces a characteristic remodeling of the actin cytoskeleton. In infected lymphocytes, ruffle formation is inhibited, whereas long, thin filopodium-like protrusions are induced. Cells infected with HIV with nef deleted display a normal phenotype, and Nef expression alone, in the absence of other viral proteins, induces morphological changes. We also used an innovative imaging system to immobilize and visualize living individual cells in suspension. When combined with confocal “axial tomography,” this technique greatly enhances three-dimensional optical resolution. With this technique, we confirmed the induction of long filopodium-like structures in unfixed Nef-expressing lymphocytes. The cytoskeleton reorganization induced by Nef is associated with an important impairment of cell movements. The adhesion and spreading of infected cells to fibronectin, their spontaneous motility, and their migration toward chemokines (CXCL12, CCL3, and CCL19) were all significantly decreased. Therefore, Nef induces complex effects on the lymphocyte actin cytoskeleton and cellular morphology, which likely impacts the capacity of infected cells to circulate and to encounter and communicate with bystander cells.
Journal of Experimental Medicine | 2007
Vincenzo Di Bartolo; Benjamin Montagne; Mogjiborahman Salek; Britta Jungwirth; Florent Carrette; Julien Fourtane; Nathalie Sol-Foulon; Frédérique Michel; Olivier Schwartz; Wolf D. Lehmann; Oreste Acuto
The SH2 domain–containing leukocyte protein of 76 kD (SLP-76) is a pivotal element of the signaling machinery controlling T cell receptor (TCR)-mediated activation. Here, we identify 14-3-3ɛ and ζ proteins as SLP-76 binding partners. This interaction was induced by TCR ligation and required phosphorylation of SLP-76 at serine 376. Ribonucleic acid interference and in vitro phosphorylation experiments showed that serine 376 is the target of the hematopoietic progenitor kinase 1 (HPK-1). Interestingly, either S376A mutation or HPK-1 knockdown resulted in increased TCR-induced tyrosine phosphorylation of SLP-76 and phospholipase C-γ1. Moreover, an SLP-76–S376A mutant induced higher interleukin 2 gene transcription than wild-type SLP-76. These data reveal a novel negative feedback loop involving HPK-1–dependent serine phosphorylation of SLP-76 and 14-3-3 protein recruitment, which tunes T cell activation.
AIDS | 2009
Hugues Fausther-Bovendo; Nathalie Sol-Foulon; Daniel Candotti; Henri Agut; Olivier Schwartz; Patrice Debré; Vincent Vieillard
Objective:HIV infection induces a progressive depletion of CD4+ T cells. We showed that NKp44L, a cellular ligand for an activating natural killer (NK) receptor, is expressed on CD4+ T cells during HIV infection and is correlated with both CD4 cell depletion and increase in viral load. NKp44L+CD4+ T cells are highly sensitive to the NK lysis activity. In contrast, HIV-infected CD4+ T cells are resistant to NK killing, suggesting that HIV-1 developed strategies to avoid detection by the host cell immunity. Design:To assess whether viral protein can affect NKp44L expression, using Nef-deficient virus as well as a panel of recombinant vaccinia viruses expressing all HIV-1 viral proteins was tested. The involvement of Nef in the downmodulation of NKp44L was determined using defined mutants of Nef. Functional consequences of Nef on NK-cell recognition were evaluated by either 51Cr-release assays and degranulation assays in presence of anti-NKp44L mAb. Results:We observed that during HIV-1 infection, noninfected CD4+ T cells exclusively expressed NKp44L, and demonstrate that Nef mediates NKp44L intracellular retention in HIV-infected cells. This has functional consequences on HIV-infected CD4+ T cells recognition by NK cells, causing a decreased susceptibility to NK cytotoxicity. Furthermore, experiments in presence of neutralizing NKp44L mAb revealed that Nef inhibitory effect on NK cytotoxicity mainly depends on the NKp44L pathway. Conclusion:This novel escape mechanism could explain the resistance of HIV-infected cells to NK lysis and as a result play a key role in maintaining the HIV reservoir by avoiding recognition by NK cells.
Journal of Virology | 2003
Cinzia Nobile; Arnaud Moris; Françoise Porrot; Nathalie Sol-Foulon; Olivier Schwartz
ABSTRACT DC-SIGN, a lectin expressed on dendritic cell and macrophage subsets, binds to human immunodeficiency virus Env glycoproteins, allowing capture of viral particles. Captured virions either infect target cells or are efficiently transmitted to lymphocytes. Cellular mechanisms underlying the effects of DC-SIGN remain poorly understood. Here we have analyzed the effects of DC-SIGN on viral entry and on syncytium formation induced by Env glycoproteins. The lectin enhanced susceptibility to viral infection and dramatically increased virion internalization. Captured virions accumulated in the vesicular pathway, and their access to the cytosol was altered. Strikingly, the presence of DC-SIGN on target cells inhibited their ability to form syncytia with Env-expressing cells. However, increasing CD4 surface levels on target cells alleviated this inhibitory effect of DC-SIGN. Moreover, the potency of the viral fusion inhibitor T-20 was not affected in DC-SIGN-expressing cells. Altogether, our results indicate that DC-SIGN exerts subtle and complex effects during early steps of HIV type 1 replication. DC-SIGN facilitates capture and accumulation of viral particles in a vesicular compartment and inhibits viral fusion. Competition between CD4 and DC-SIGN for Env binding likely affects virus access to the cytosol and syncytium formation.
Journal of Virology | 2004
Mickaël J.-Y. Ploquin; Ousmane M. Diop; Nathalie Sol-Foulon; Lorenzo Mortara; Abdourahmane Faye; Marcelo A. Soares; Eric Nerrienet; Roger Le Grand; Yvette van Kooyk; Ali Amara; Olivier Schwartz; Françoise Barré-Sinoussi; Michaela Müller-Trutwin
ABSTRACT African green monkeys (AGMs) infected by simian immunodeficiency virus (SIV) SIVagm are resistant to AIDS. SIVagm-infected AGMs exhibit levels of viremia similar to those described during pathogenic human immunodeficiency virus type 1 (HIV-1) and SIVmac infections in humans and macaques, respectively, but contain lower viral loads in their lymph nodes. We addressed the potential role of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN; CD209) in viral dissemination. In previous studies, it has been shown that human DC-SIGN and macaque DC-SIGN allow transmission of HIV and SIVmac to T cells. Here, we looked at the ability of DC-SIGN derived from AGM lymph nodes to interact with SIVagm. We show that DC-SIGN-expressing cells are present mainly in the medulla and often within the cortex and/or paracortex of AGM lymph nodes. We describe the isolation and characterization of at least three isoforms of dc-sign mRNA in lymph nodes of AGMs. The predicted amino acid sequence from the predominant mRNA isoform, DC-SIGNagm1, is 92 and 99% identical to the corresponding human and rhesus macaque DC-SIGN amino acid sequences, respectively. DC-SIGNagm1 is characterized by the lack of the fourth motif in the repeat domain. This deletion was also detected in the dc-sign gene derived from thirteen animals belonging to five other African monkey species and from four macaques (Macaca fascicularis and M. mulatta). Despite three- to seven-amino-acid modifications compared to DC-SIGNmac, DC-SIGNagm1 allows transmission of SIVagm to T cells. Furthermore, AGM monocyte-derived dendritic cells (MDDC) expressed at least 100,000 DC-SIGN molecules and were able to transmit SIVagm to T cells. At a low multiplicity of infection (10−5 50% tissue culture infective doses/cell), viral transmission by AGM MDDC was mainly DC-SIGN dependent. The present study reveals that DC-SIGN from a natural host species of SIV has the ability to act as an efficient attachment and transmission factor for SIVagm and suggests the absence of a direct link between this ability and viral load levels in lymph nodes.