Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan A. Palmer is active.

Publication


Featured researches published by Nathan A. Palmer.


Plant Physiology | 2009

A Nonsense Mutation in a Cinnamyl Alcohol Dehydrogenase Gene Is Responsible for the Sorghum brown midrib6 Phenotype

Scott E. Sattler; Aaron J. Saathoff; Eric J. Haas; Nathan A. Palmer; Deanna L. Funnell-Harris; Gautam Sarath; Jeffrey F. Pedersen

brown midrib6 (bmr6) affects phenylpropanoid metabolism, resulting in reduced lignin concentrations and altered lignin composition in sorghum (Sorghum bicolor). Recently, bmr6 plants were shown to have limited cinnamyl alcohol dehydrogenase activity (CAD; EC 1.1.1.195), the enzyme that catalyzes the conversion of hydroxycinnamoyl aldehydes (monolignals) to monolignols. A candidate gene approach was taken to identify Bmr6. Two CAD genes (Sb02g024190 and Sb04g005950) were identified in the sorghum genome based on similarity to known CAD genes and through DNA sequencing a nonsense mutation was discovered in Sb04g005950 that results in a truncated protein lacking the NADPH-binding and C-terminal catalytic domains. Immunoblotting confirmed that the Bmr6 protein was absent in protein extracts from bmr6 plants. Phylogenetic analysis indicated that Bmr6 is a member of an evolutionarily conserved group of CAD proteins, which function in lignin biosynthesis. In addition, Bmr6 is distinct from the other CAD-like proteins in sorghum, including SbCAD4 (Sb02g024190). Although both Bmr6 and SbCAD4 are expressed in sorghum internodes, an examination of enzymatic activity of recombinant Bmr6 and SbCAD4 showed that Bmr6 had 1 to 2 orders of magnitude greater activity for monolignol substrates. Modeling of Bmr6 and SbCAD4 protein structures showed differences in the amino acid composition of the active site that could explain the difference in enzyme activity. These differences include His-57, which is unique to Bmr6 and other grass CADs. In summary, Bmr6 encodes the major CAD protein involved in lignin synthesis in sorghum, and the bmr6 mutant is a null allele.


Planta | 2008

Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum.

Nathan A. Palmer; Scott E. Sattler; Aaron J. Saathoff; Deanna L. Funnell; J. F. Pedersen; Gautam Sarath

Sorghum (Sorghum bicolor (L.). Moench) BMR-6 and BMR-12 encode cinnamylalcohol dehydrogenase and caffeic acid-O-methyltransferase, respectively. We have evaluated the impact of two bmr alleles, bmr-6 and bmr-12, respectively, on soluble and wall-bound aromatics in near isogenic, wild-type (WT), bmr-6, bmr-12 and double-mutant (DM; bmr-6 and bmr-12) plants in two genetic backgrounds, RTx430 and Wheatland. Immunoblots confirmed that COMT protein was essentially absent in bmr-12 and DM plants, but was present in bmr-6 and WT plants. In contrast, although CAD activity was not detected in bmr-6 and DM plants, proteins crossreacting to anti-CAD sera were found in stem extracts from all genotypes. In both sorghum backgrounds, WT plants had lowest amounts of free aromatics, higher levels of cell wall-bound pCA and FA esters and guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) lignins. Soluble aromatics and cell wall phenolic ester content in Wheatland DM plants resembled that of Wheatland bmr-6 plants, whereas in the RTx430 background, levels of these components in the DM plants more closely resembled those observed in bmr-12 plants. In both backgrounds, bmr-6 plants exhibited reduced levels of G, S, and H lignins relative to WT, and increased incorporation of G-indene into lignin. In bmr-12 plants, there was greater incorporation of G- and 5-hydroxyguaiacyl (5-OHG) lignin into cell walls. Histochemical staining of internode sections from Wheatland plants indicated that apparent lignification of cortical sclerenchyma and vascular bundle fibers was greatest and most uniform in WT plants. Relative staining intensity of these tissues was decreased in bmr-6, followed by bmr-12 plants. DM plants exhibited poor staining of cortical sclerenchyma and vascular bundle fibers.


Bioenergy Research | 2012

Identification and characterization of four missense mutations in brown midrib 12 (Bmr12), the caffeic O-methyltranferase (COMT) of sorghum.

Scott E. Sattler; Nathan A. Palmer; Ana Saballos; Ann M. Greene; Zhanguo Xin; Gautam Sarath; Wilfred Vermerris; Jeffrey F. Pedersen

Modifying lignin content and composition are targets to improve bioenergy crops for cellulosic conversion to biofuels. In sorghum and other C4 grasses, the brown midrib mutants have been shown to reduce lignin content and alter its composition. Bmr12 encodes the sorghum caffeic O-methyltransferase, which catalyzes the penultimate step in monolignol biosynthesis. From an EMS-mutagenized TILLING population, four bmr12 mutants were isolated. DNA sequencing identified the four missense mutations in the Bmr12 coding region, which changed evolutionarily conserved amino acids Ala71Val, Pro150Leu, Gly225Asp, and Gly325Ser. The previously characterized bmr12 mutants all contain premature stop codons. These newly identified mutants, along with the previously characterized bmr12-ref, represent the first allelic series of bmr12 mutants available in the same genetic background. The impacts of these newly identified mutations on protein accumulation, enzyme activity, Klason lignin content, lignin subunit composition, and saccharification yield were determined. Gly225Asp mutant greatly reduced protein accumulation, and Pro150Leu and Gly325Ser greatly impaired enzyme activity compared to wild type (WT). All four mutants significantly reduced Klason lignin content and altered lignin composition resulting in a significantly reduced S/G ratio relative to WT, but the overall impact of these mutations was less severe than bmr12-ref. Except for Gly325Ser, which is a hypomorphic mutant, all mutants increased the saccharification yield relative to WT. These mutants represent new tools to decrease lignin content and S/G ratio, possibly leading toward the ability to tailor lignin content and composition in the bioenergy grass sorghum.


Functional & Integrative Genomics | 2015

Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics

Nathan A. Palmer; Teresa Donze-Reiner; David P. Horvath; Tiffany Heng-Moss; Brian M. Waters; Christian M. Tobias; Gautam Sarath

Switchgrass flag leaves can be expected to be a source of carbon to the plant, and its senescence is likely to impact the remobilization of nutrients from the shoots to the rhizomes. However, many genes have not been assigned a function in specific stages of leaf development. Here, we characterized gene expression in flag leaves over their development. By merging changes in leaf chlorophyll and the expression of genes for chlorophyll biosynthesis and degradation, a four-phase molecular roadmap for switchgrass flag leaf ontogeny was developed. Genes associated with early leaf development were up-regulated in phase 1. Phase 2 leaves had increased expression of genes for chlorophyll biosynthesis and those needed for full leaf function. Phase 3 coincided with the most active phase for leaf C and N assimilation. Phase 4 was associated with the onset of senescence, as observed by declining leaf chlorophyll content, a significant up-regulation in transcripts coding for enzymes involved with chlorophyll degradation, and in a large number of senescence-associated genes. Of considerable interest were switchgrass NAC transcription factors with significantly higher expression in senescing flag leaves. Two of these transcription factors were closely related to a wheat NAC gene that impacts mineral remobilization. The third switchgrass NAC factor was orthologous to an Arabidopsis gene with a known role in leaf senescence. Other genes coding for nitrogen and mineral utilization, including ureide, ammonium, nitrate, and molybdenum transporters, shared expression profiles that were significantly co-regulated with the expression profiles of the three NAC transcription factors. These data provide a good starting point to link shoot senescence to the onset of dormancy in field-grown switchgrass.


BMC Genomics | 2015

The WRKY transcription factor family and senescence in switchgrass.

Charles I Rinerson; Erin D. Scully; Nathan A. Palmer; Teresa Donze-Reiner; Roel C. Rabara; Prateek Tripathi; Qingxi J. Shen; Scott E. Sattler; Jai S. Rohila; Gautam Sarath; Paul J. Rushton

BackgroundEarly aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields.MethodsAll potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset.ResultsWe identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree.ConclusionsWe have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.


Bioenergy Research | 2012

Next-Generation Sequencing of Crown and Rhizome Transcriptome from an Upland, Tetraploid Switchgrass

Nathan A. Palmer; Aaron J. Saathoff; Jaehyoung Kim; Andrew K. Benson; Christian M. Tobias; Paul Twigg; Kenneth P. Vogel; Soundararajan Madhavan; Gautam Sarath

The crown and rhizome transcriptome of an upland tetraploid switchgrass cultivar cv Summer well adapted to the upper Midwest was investigated using the Roche 454-FLX pyrosequencing platform. Overall, approximately one million reads consisting of 216 million bases were assembled into 27,687 contigs and 43,094 singletons. Analyses of these sequences revealed minor contamination with non-plant sequences (< 0.5%), indicating that a majority were for transcripts coded by the switchgrass genome. Blast2Gos comparisons resulted in the annotation of ~65% of the contig sequences and ~40% of the singleton sequences. Contig sequences were mostly homologous to other plant sequences, dominated by matches to Sorghum bicolor genome. Singleton sequences, while displaying significant matches to S. bicolor, also contained sequences matching non-plant species. Comparisons of the 454 dataset to existing EST collections resulted in the identification of 30,177 new sequences. These new sequences coded for a number of different proteins and a selective analysis of two categories, namely, peroxidases and transcription factors, resulted in the identification of specific peroxidases and a number of low-abundance transcription factors expected to be involved in chromatin remodeling. KEGG maps for glycolysis and sugar metabolism showed high levels of transcript coding for enzymes involved in primary metabolism. The assembly provided significant insights into the status of these tissues and broadly indicated that there was active metabolism taking place in the crown and rhizomes at post-anthesis, the seed maturation stage of plant development.


Plant Journal | 2016

Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in Sorghum bicolor.

Erin D. Scully; Tammy Gries; Gautam Sarath; Nathan A. Palmer; Lisa M. Baird; Michelle J. Serapiglia; Bruce S. Dien; Akwasi A. Boateng; Zhengxiang Ge; Deanna L. Funnell-Harris; Paul Twigg; Thomas E. Clemente; Scott E. Sattler

The phenylpropanoid biosynthetic pathway that generates lignin subunits represents a significant target for altering the abundance and composition of lignin. The global regulators of phenylpropanoid metabolism may include MYB transcription factors, whose expression levels have been correlated with changes in secondary cell wall composition and the levels of several other aromatic compounds, including anthocyanins and flavonoids. While transcription factors correlated with downregulation of the phenylpropanoid biosynthesis pathway have been identified in several grass species, few transcription factors linked to activation of this pathway have been identified in C4 grasses, some of which are being developed as dedicated bioenergy feedstocks. In this study we investigated the role of SbMyb60 in lignin biosynthesis in sorghum (Sorghum bicolor), which is a drought-tolerant, high-yielding biomass crop. Ectopic expression of this transcription factor in sorghum was associated with higher expression levels of genes involved in monolignol biosynthesis, and led to higher abundances of syringyl lignin, significant compositional changes to the lignin polymer and increased lignin concentration in biomass. Moreover, transgenic plants constitutively overexpressing SbMyb60 also displayed ectopic lignification in leaf midribs and elevated concentrations of soluble phenolic compounds in biomass. Results indicate that overexpression of SbMyb60 is associated with activation of monolignol biosynthesis in sorghum. SbMyb60 represents a target for modification of plant cell wall composition, with the potential to improve biomass for renewable uses.


Frontiers in Plant Science | 2013

Towards uncovering the roles of switchgrass peroxidases in plant processes

Aaron J. Saathoff; Teresa Donze; Nathan A. Palmer; Jeff Bradshaw; Tiffany Heng-Moss; Paul Twigg; Christian M. Tobias; Mark Lagrimini; Gautam Sarath

Herbaceous perennial plants selected as potential biofuel feedstocks had been understudied at the genomic and functional genomic levels. Recent investments, primarily by the U.S. Department of Energy, have led to the development of a number of molecular resources for bioenergy grasses, such as the partially annotated genome for switchgrass (Panicum virgatum L.), and some related diploid species. In its current version, the switchgrass genome contains 65,878 gene models arising from the A and B genomes of this tetraploid grass. The availability of these gene sequences provides a framework to exploit transcriptomic data obtained from next-generation sequencing platforms to address questions of biological importance. One such question pertains to discovery of genes and proteins important for biotic and abiotic stress responses, and how these components might affect biomass quality and stress response in plants engineered for a specific end purpose. It can be expected that production of switchgrass on marginal lands will expose plants to diverse stresses, including herbivory by insects. Class III plant peroxidases have been implicated in many developmental responses such as lignification and in the adaptive responses of plants to insect feeding. Here, we have analyzed the class III peroxidases encoded by the switchgrass genome, and have mined available transcriptomic datasets to develop a first understanding of the expression profiles of the class III peroxidases in different plant tissues. Lastly, we have identified switchgrass peroxidases that appear to be orthologs of enzymes shown to play key roles in lignification and plant defense responses to hemipterans.


PLOS ONE | 2014

Contrasting Metabolism in Perenniating Structures of Upland and Lowland Switchgrass Plants Late in the Growing Season

Nathan A. Palmer; Aaron J. Saathoff; Christian M. Tobias; Paul Twigg; Yuannan Xia; Kenneth P. Vogel; Soundararajan Madhavan; Scott E. Sattler; Gautam Sarath

Background Switchgrass (Panicum virgatum L.) is being developed as a bioenergy crop for many temperate regions of the world. One way to increase biomass yields is to move southern adapted lowland cultivars to more northern latitudes. However, many southerly adapted switchgrass germplasm can suffer significant winter kill in northerly climes. Materials and Methods Here, we have applied next-generation sequencing in combination with biochemical analyses to query the metabolism of crowns and rhizomes obtained from two contrasting switchgrass cultivars. Crowns and rhizomes from field-grown lowland (cv Kanlow) and upland (cv Summer) switchgrass cultivars were collected from three randomly selected post-flowering plants. Summer plants were senescing, whereas Kanlow plants were not at this harvest date. Results Principal component analysis (PCA) differentiated between both the Summer and Kanlow transcriptomes and metabolomes. Significant differences in transcript abundances were detected for 8,050 genes, including transcription factors such as WRKYs and those associated with phenylpropanoid biosynthesis. Gene-set enrichment analyses showed that a number of pathways were differentially up-regulated in the two populations. For both populations, protein levels and enzyme activities agreed well with transcript abundances for genes involved in the phenylpropanoid pathway that were up-regulated in Kanlow crowns and rhizomes. The combination of these datasets suggests that dormancy-related mechanisms had been triggered in the crowns and rhizomes of the Summer plants, whereas the crowns and rhizomes of Kanlow plants had yet to enter dormancy. Conclusions Delayed establishment of dormancy at more northerly latitudes could be one factor that reduces winter-survival in the high-yielding Kanlow plants. Understanding the cellular signatures that accompany the transition to dormancy can be used in the future to select plants with improved winter hardiness.


Frontiers in Plant Science | 2014

Global Changes in Mineral Transporters in Tetraploid Switchgrasses ( Panicum virgatum L.)

Nathan A. Palmer; Aaron J. Saathoff; Brian M. Waters; Teresa Donze; Tiffany Heng-Moss; Paul Twigg; Christian M. Tobias; Gautam Sarath

Switchgrass (Panicum virgatum L) is perennial, C4 grass with great potential as a biofuel crop. An in-depth understanding of the mechanisms that control mineral uptake, distribution and remobilization will benefit sustainable production. Nutrients are mobilized from aerial portions to below-ground crowns and rhizomes as a natural accompaniment to above-ground senescence post seed-set. Mineral uptake and remobilization is dependent on transporters, however, little if any information is available about the specific transporters that are needed and how their relative expression changes over a growing season. Using well-defined classes of mineral transporters, we identified 520 genes belonging to 40 different transporter classes in the tetraploid switchgrass genome. Expression patterns were determined for many of these genes using publically available transcriptomic datasets obtained from both greenhouse and field grown plants. Certain transporters showed strong temporal patterns of expression in distinct developmental stages of the plant. Gene-expression was verified for selected transporters using qRT-PCR. By and large these analyses confirmed the developmental stage-specific expression of these genes. Mineral analyses indicated that K, Fe, Mg, Co, and As had a similar pattern of accumulation with apparent limited remobilization at the end of the growing season. These initial analyses will serve as a foundation for more detailed examination of the nutrient biology of switchgrass.

Collaboration


Dive into the Nathan A. Palmer's collaboration.

Top Co-Authors

Avatar

Gautam Sarath

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Scott E. Sattler

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Paul Twigg

University of Nebraska at Kearney

View shared research outputs
Top Co-Authors

Avatar

Erin D. Scully

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Christian M. Tobias

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Tiffany Heng-Moss

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Aaron J. Saathoff

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Teresa Donze-Reiner

West Chester University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Deanna L. Funnell-Harris

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Jeffrey F. Pedersen

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge