Nathan A. Zaidman
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan A. Zaidman.
Recent Patents on Anti-cancer Drug Discovery | 2013
Darinka Gjorgieva; Nathan A. Zaidman; Darko Bosnakovski
Self renewal, extensive proliferation and multilineage differentiation ability in vitro and in vivo make mesenchymal stem cells (MSCs) powerful tools for tissue engineering. Beyond their potential uses in regenerative medicine, an emerging field of research aims to utilize MSCs for anti-cancer treatment. These strategies are based on the remarkable ability of MSCs to localize and integrate into tumor stroma and deliver anti-cancer agents (US20100055167, US20120207725, US20120010499). Genetically engineered MSCs can specifically target different tumor types and locally secrete therapeutic proteins such as interferons α and β, interleukins 2 and 12 or chemokine CX3CL1 (US20110027239, US20120087901, WO2012071527). In addition, MSCs have also been engineered to deliver oncolytic viruses, for targeted chemotherapy using enzyme prodrug conversion or for inducing tumor cell apoptosis by delivering tumor necrosis factor-related apoptosis inducing ligand (TRAIL) (WO2012106281). The patent databases FPO and Delphion were used to locate patents that were published between 2005 and 2013. Here, we present the current progress and the most recent patents on MSC anti-cancer drug delivery systems and discuss future directions in the field.
American Journal of Physiology-cell Physiology | 2015
Elizabeth R. Peitzman; Nathan A. Zaidman; Peter J. Maniak; Scott M. O'Grady
Human airway epithelial cells express β-adrenergic receptors (β-ARs), which regulate mucociliary clearance by stimulating transepithelial anion transport and ciliary beat frequency. Previous studies using airway epithelial cells showed that stimulation with isoproterenol increased cell migration and wound repair by a cAMP-dependent mechanism. In the present study, impedance-sensing arrays were used to measure cell migration and epithelial restitution following wounding of confluent normal human bronchial epithelial (NHBE) and Calu-3 cells by electroporation. Stimulation with epinephrine or the β2-AR-selective agonist salbutamol significantly delayed wound closure and reduced the mean surface area of lamellipodia protruding into the wound. Treatment with the β-AR bias agonist carvedilol or isoetharine also produced a delay in epithelial restitution similar in magnitude to epinephrine and salbutamol. Measurements of extracellular signal-regulated kinase phosphorylation following salbutamol or carvedilol stimulation showed no significant change in the level of phosphorylation compared with untreated control cells. However, inhibition of protein phosphatase 2A activity completely blocked the delay in wound closure produced by β-AR agonists. In Calu-3 cells, where CFTR expression was inhibited by RNAi, salbutamol did not inhibit wound repair, suggesting that β-AR agonist stimulation and loss of CFTR function share a common pathway leading to inhibition of epithelial repair. Confocal images of the basal membrane of Calu-3 cells labeled with anti-β1-integrin (clone HUTS-4) antibody showed that treatment with epinephrine or carvedilol reduced the level of activated integrin in the membrane. These findings suggest that treatment with β-AR agonists delays airway epithelial repair by a G protein- and cAMP-independent mechanism involving protein phosphatase 2A and a reduction in β1-integrin activation in the basal membrane.
Molecular metabolism | 2017
Cheryl Cero; Maria Razzoli; Ruijun Han; Bhavani S. Sahu; Jessica Patricelli; Zeng Kui Guo; Nathan A. Zaidman; John M. Miles; Scott M. O'Grady; Alessandro Bartolomucci
Objectives Obesity is characterized by excessive fat mass and is associated with serious diseases such as type 2 diabetes. Targeting excess fat mass by sustained lipolysis has been a major challenge for anti-obesity therapies due to unwanted side effects. TLQP-21, a neuropeptide encoded by the pro-peptide VGF (non-acronymic), that binds the complement 3a receptor 1 (C3aR1) on the adipocyte membrane, is emerging as a novel modulator of adipocyte functions and a potential target for obesity-associated diseases. The molecular mechanism is still largely uncharacterized. Methods We used a combination of pharmacological and genetic gain and loss of function approaches. 3T3-L1 and mature murine adipocytes were used for in vitro experiments. Chronic in vivo experiments were conducted on diet-induced obese wild type, β1, β2, β3-adrenergic receptor (AR) deficient and C3aR1 knockout mice. Acute in vivo lipolysis experiments were conducted on Sprague Dawley rats. Results We demonstrated that TLQP-21 does not possess lipolytic properties per se. Rather, it enhances β-AR activation-induced lipolysis by a mechanism requiring Ca2+ mobilization and ERK activation of Hormone Sensitive Lipase (HSL). TLQP-21 acutely potentiated isoproterenol-induced lipolysis in vivo. Finally, chronic peripheral TLQP-21 treatment decreases body weight and fat mass in diet induced obese mice by a mechanism involving β-adrenergic and C3a receptor activation without associated adverse metabolic effects. Conclusions In conclusion, our data identify an alternative pathway modulating lipolysis that could be targeted to diminish fat mass in obesity without the side effects typically observed when using potent pro-lipolytic molecules.
American Journal of Physiology-cell Physiology | 2016
Nathan A. Zaidman; Angela Panoskaltsis-Mortari; Scott M. O'Grady
Glucocorticoids strongly influence the mucosal-defense functions performed by the bronchial epithelium, and inhaled corticosteroids are critical in the treatment of patients with inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. A common pathology associated with these diseases is reduced mucociliary clearance, a defense mechanism involving the coordinated transport of salt, water, and mucus by the bronchial epithelium, ultimately leading to retention of pathogens and particles in the airways and to further disease progression. In the present study we investigated the role of hydrocortisone (HC) in differentiation and development of the ion transport phenotype of normal human bronchial epithelial cells under air-liquid interface conditions. Normal human bronchial epithelial cells differentiated in the absence of HC (HC0) showed significantly less benzamil-sensitive short-circuit current than controls, as well as a reduced response after stimulation with the selective β2-adrenergic receptor agonist salbutamol. Apical membrane localization of epithelial Na(+) channel α-subunits was similarly reduced in HC0 cells compared with controls, supporting a role of HC in the trafficking and density of Na(+) channels in the plasma membrane. Additionally, glucocorticoid exposure during differentiation regulated the transcription of cystic fibrosis transmembrane conductance regulator and β2-adrenergic receptor mRNAs and appeared to be necessary for the expression of cystic fibrosis transmembrane conductance regulator-dependent anion secretion in response to β2-agonists. HC had no significant effect on surface cell differentiation but did modulate the expression of mucin mRNAs. These findings indicate that glucocorticoids support mucosal defense by regulating critical transport pathways essential for effective mucociliary clearance.
Recent Patents on Regenerative Medicine (Discontinued) | 2012
Nathan A. Zaidman; Darko Bosnakovski
Bone grafting has come a very long way since a Dutch surgeon used pieces of a dogs skull to repair a soldiers cranium in the 17 th Century. Current technology aims to deliver a scaffold that combines the unique osteogenic properties of ceramic biocomposite materials to make the best mimic of physiologic conditions. To do so, a scaffold must provide: i) A three-dimensional platform allowing for osteogenic cellular attachment and growth and vascular formation, ii) Struc- tural integrity while the damaged tissue heals, and iii) Non-toxic integration, degradation or resorption into the host over an appropriate time. The combination of inorganic, ceramic materials with cells, polymers and growth factors has come very close to creating a bone graft capable of meeting each of these requirements. Recent patents describe new methods to forming an ideal osteogenic matrix for both large and small bone repair. Many new technologies have been introduced that are very potent in their ability to heal small bone wounds and induce new bone formation, such as porous calcium phosphate pastes and hydroxyapatite cements. However, there is still a lack of quality and proven materials for load bear- ing purposes. This is a reminder of how much there still is to improve upon and that we are still a long way from creating bone products that are identical to the natural product. Despite these shortcomings, ceramic biocomposties represent one of the most promising materials in the bone graft field and their development and improvement will surely lead to a more natural bone replacement.
PLOS ONE | 2015
Venkatramana D. Krishna; Erin Roach; Nathan A. Zaidman; Angela Panoskaltsis-Mortari; Jessica H. Rotschafer; Scott M. O’Grady; Maxim C.-J. Cheeran
Interferons (IFNs) have been shown to inhibit influenza A virus (IAV) replication and play an essential role in controlling viral infection. Here we studied the kinetics and magnitude of induction of type I and type III IFN transcripts by primary porcine airway epithelial cells (pAECs) in response to swine and human origin IAV. We observed that swine influenza viruses (SIV) replicate more efficiently than the human pandemic influenza A/California/2009 (pH1N1 CA/09) in pAECs. Interestingly, we also found significant difference in kinetics of IFN-β, IFN-λ1 and IFN-λ3 gene expression by these viruses. While there was delay of up to 12 hours post infection (h p.i.) in induction of IFN genes in pAECs infected with swine IAV A/Sw/Illinois/2008 (H1N1 IL/08), human pH1N1 CA/09 rapidly induced IFN-β, IFN-λ1 and IFN-λ3 gene expression as early as 4 h p.i. However, the magnitude of IFN-β and IFN-λ3 induction at 24 h p.i. was not significantly different between the viral strains tested. Additionally, we found that swine H1N1 IL/08 was less sensitive to dsRNA induced antiviral response compared to human pH1N1 CA/09. Our data suggest that the human and swine IAVs differ in their ability to induce and respond to type I and type III interferons in swine cells. Swine origin IAV may have adapted to the pig host by subverting innate antiviral responses to viral infection.
The Journal of Physiology | 2017
Nathan A. Zaidman; Angela Panoskaltsis-Mortari; Scott M. O'Grady
Hydrocortisone (HC) is required for activation of large‐conductance Ca2+‐activated K+ current (BK) by purinergic receptor agonists. HC reduces insertion of the stress‐regulated exon (STREX) in the KCNMA1 gene, permitting protein kinase C (PKC)‐dependent channel activation. Overlapping and unique purinergic signalling regions exist at the apical border of differentiated surface cells. BK channels localize in the cilia of surface cells.
American Journal of Physiology-cell Physiology | 2017
Nathan A. Zaidman; Kelly E. O’Grady; Nandadevi Patil; Francesca Milavetz; Peter J. Maniak; Hirohito Kita; Scott M. O’Grady
Aeroallergens produced by Alternaria alternata can elicit life-threatening exacerbations of asthma in patients sensitized to this fungus. In this study, the effect of Alternaria on ion transport mechanisms underlying mucociliary clearance and airway epithelial barrier function was investigated in human airway epithelial cells. Apical exposure to Alternaria induced an increase in anion secretion that was inhibited by blockers of CFTR and Ca2+-activated Cl- channels. Stimulation of anion secretion was dependent on Ca2+ uptake from the apical solution. Alternaria exposure also produced an increase in reactive oxygen species (ROS) that was blocked by pretreatment with the oxidant scavenger glutathione (GSH). GSH and the NADPH oxidase inhibitor/complex 1 electron transport inhibitor diphenylene iodonium chloride (DPI) blocked ATP release and the increase in intracellular [Ca2+] evoked by AlternariaAlternaria also decreased transepithelial resistance, and a portion of this effect was dependent on the increase in ROS. However, the Alternaria-induced increase in unidirectional dextran (molecular mass = 4,000 Da) flux across the epithelium could not be accounted for by increased oxidative stress. These results support the conclusion that oxidative stress induced by Alternaria was responsible for regulating Ca2+-dependent anion secretion and tight junction electrical resistance that would be expected to affect mucociliary clearance.
American Journal of Physiology-cell Physiology | 2018
Yotesawee Srisomboon; Nathan A. Zaidman; Peter J. Maniak; Chatsri Deachapunya; Scott M. O'Grady
The objective of this study was to determine the molecular identity of ion channels involved in K+ secretion by the mammary epithelium and to examine their regulation by purinoceptor agonists. Apical membrane voltage-clamp experiments were performed on human mammary epithelial cells where the basolateral membrane was exposed to the pore-forming antibiotic amphotericin B dissolved in a solution with intracellular-like ionic composition. Addition of the Na+ channel inhibitor benzamil reduced the basal current, consistent with inhibition of Na+ uptake across the apical membrane, whereas the KCa3.1 channel blocker TRAM-34 produced an increase in current resulting from inhibition of basal K+ efflux. Treatment with two-pore potassium (K2P) channel blockers quinidine, bupivacaine and a selective TASK1/TASK3 inhibitor (PK-THPP) all produced concentration-dependent inhibition of apical K+ efflux. qRT-PCR experiments detected mRNA expression for nine K2P channel subtypes. Western blot analysis of biotinylated apical membranes and confocal immunocytochemistry revealed that at least five K2P subtypes (TWIK1, TREK1, TREK2, TASK1, and TASK3) are expressed in the apical membrane. Apical UTP also increased the current, but pretreatment with the PKC inhibitor GF109203X blocked the response. Similarly, direct activation of PKC with phorbol 12-myristate 13-acetate produced a similar increase in current as observed with UTP. These results support the conclusion that the basal level of K+ secretion involves constitutive activity of apical KCa3.1 channels and multiple K2P channel subtypes. Apical UTP evoked a transient increase in KCa3.1 channel activity, but over time caused persistent inhibition of K2P channel function leading to an overall decrease in K+ secretion.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2016
Elizabeth R. Peitzman; Nathan A. Zaidman; Peter J. Maniak; Scott M. O'Grady