Nathan C. Manley
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan C. Manley.
Brain | 2011
Robert H. Andres; Nobutaka Horie; William Slikker; Hadar Keren-Gill; Ke Zhan; Guohua Sun; Nathan C. Manley; Marta P. Pereira; Lamiya A. Sheikh; Erin McMillan; Bruce T. Schaar; Clive N. Svendsen; Tonya Bliss; Gary K. Steinberg
Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated with recovery after stroke, we investigated the ability of transplanted human neural progenitor cells to enhance this structural plasticity. Our results show the first evidence that human neural progenitor cell treatment can significantly increase dendritic plasticity in both the ipsi- and contralesional cortex and this coincides with stem cell-induced functional recovery. Moreover, stem cell-grafted rats demonstrated increased corticocortical, corticostriatal, corticothalamic and corticospinal axonal rewiring from the contralesional side; with the transcallosal and corticospinal axonal sprouting correlating with functional recovery. Furthermore, we demonstrate that axonal transport, which is critical for both proper axonal function and axonal sprouting, is inhibited by stroke and that this is rescued by the stem cell treatment, thus identifying another novel potential mechanism of action of transplanted cells. Finally, we established in vitro co-culture assays in which these stem cells mimicked the effects observed in vivo. Through immunodepletion studies, we identified vascular endothelial growth factor, thrombospondins 1 and 2, and slit as mediators partially responsible for stem cell-induced effects on dendritic sprouting, axonal plasticity and axonal transport in vitro. Thus, we postulate that human neural progenitor cells aid recovery after stroke through secretion of factors that enhance brain repair and plasticity.
Proceedings of the National Academy of Sciences of the United States of America | 2004
Charles D. Laird; Nicole D. Pleasant; Aaron D. Clark; Jessica L. Sneeden; K. M. A. Hassan; Nathan C. Manley; Jay C. Vary; Todd E. Morgan; R.S. Hansen; Reinhard Stöger
Epigenetic inheritance, the transmission of gene expression states from parent to daughter cells, often involves methylation of DNA. In eukaryotes, cytosine methylation is a frequent component of epigenetic mechanisms. Failure to transmit faithfully a methylated or an unmethylated state of cytosine can lead to altered phenotypes in plants and animals. A central unresolved question in epigenetics concerns the mechanisms by which a locus maintains, or changes, its state of cytosine methylation. We developed “hairpin-bisulfite PCR” to analyze these mechanisms. This method reveals the extent of methylation symmetry between the complementary strands of individual DNA molecules. Using hairpin-bisulfite PCR, we determined the fidelity of methylation transmission in the CpG island of the FMR1 gene in human lymphocytes. For the hypermethylated CpG island of this gene, characteristic of inactive-X alleles, we estimate a maintenance methylation efficiency of ≈0.96 per site per cell division. For de novo methylation efficiency (Ed), remarkably different estimates were obtained for the hypermethylated CpG island (Ed = 0.17), compared with the hypomethylated island on the active-X chromosome (Ed < 0.01). These results clarify the mechanisms by which the alternative hypomethylated and hypermethylated states of CpG islands are stably maintained through many cell divisions. We also analyzed a region of human L1 transposable elements. These L1 data provide accurate methylation patterns for the complementary strand of each repeat sequence analyzed. Hairpin-bisulfite PCR will be a powerful tool in studying other processes for which genetic or epigenetic information differs on the two complementary strands of DNA.
Journal of Biological Chemistry | 2005
Alice F. Burden; Nathan C. Manley; Aaron D. Clark; Stanley M. Gartler; Charles D. Laird; R. Scott Hansen
DNA methylation within the promoter region of human LINE1 (L1) transposable elements is important for maintaining transcriptional inactivation and for inhibiting L1 transposition. Determining methylation patterns on the complementary strands of repeated sequences is difficult using standard bisulfite methylation analysis. Evolutionary changes in each repeat and the variations between cells or alleles of the same repeat lead to a heterogeneous population of sequences. Potential sequence biases can arise during analyses that are different for the converted sense and antisense strands. These problems can be avoided with hairpin-bisulfite PCR, a double-stranded PCR method in which complementary strands of individual molecules are attached by a hairpin linker ligated to genomic DNA. Using human L1 elements to study methylation of repeated sequences, (i) we distinguish valid L1 sequences from redundant and contaminant sequences by applying the powerful new method of molecular barcodes, (ii) we resolve a controversy on the level of hemimethylation of L1 sequences in fetal fibroblasts in favor of relatively little hemimethylation, (iii) we report that human L1 sequences in different cell types also have primarily concordant CpG methylation patterns on complementary strands, and (iv) we provide evidence that non-CpG cytosines within the regions analyzed are rarely methylated.
Peptides | 2007
Ilona Zemlyak; Nathan C. Manley; Robert M. Sapolsky; lllana Gozes
The femtomolar-acting protective peptide NAP (NAPVSIPQ), derived from activity-dependent neuroprotective protein (ADNP), is broadly neuroprotective in vivo and in vitro in cerebral cortical cultures and a variety of cell lines. In the present study, we have extended previous results and examined the protective potential of NAP in primary rat hippocampal cultures, using microtubule-associated protein 2 (MAP2) as a measure for neuroprotection. Results showed that NAP, at femtomolar concentrations, completely protected against oxygen-glucose deprivation, and cyanide poisoning. Furthermore, NAP partially protected against kainic acid excitotoxicity. In summary, we have significantly expanded previous findings in demonstrating here direct neuroprotective effects for NAP on vital hippocampal neurons that are key participants in cognitive function in vivo.
Brain Research | 2007
Nathan C. Manley; Anthony A. Bertrand; Kevin S. Kinney; Tressia Hing; Robert M. Sapolsky
Brain injury due to seizure induces a robust inflammatory response that involves multiple factors. Although the expression of chemokines has been identified as a part of this response, there are remaining questions about their relative contribution to seizure pathogenesis. To address this, we report the expression profile of the chemokine, monocyte chemoattractant protein-1 (MCP-1, CCL2), during kainate-induced seizure in the rat hippocampus. Furthermore, we compare MCP-1 expression to the temporal profile of blood-brain barrier (BBB) permeability and immune cell recruitment at the injury site, since both of these events have been linked to MCP-1. We find that BBB permeability increased prior to upregulation of MCP-1, while MCP-1 upregulation and immune cell recruitment occurred concurrently, 7-13 h after opening of the BBB. Our findings support the following conclusions: (1) BBB opening to large proteins does not require MCP-1 upregulation; (2) Leukocyte immigration is not sufficient to induce BBB opening to large proteins; (3) MCP-1 upregulation likely mediates recruitment of macrophages/microglia and granulocytes during seizure injury, thus warranting further investigation of this chemokine.
Neuroendocrinology | 2014
Shawn F. Sorrells; Carolina Demarchi Munhoz; Nathan C. Manley; Sandra Yen; Robert M. Sapolsky
Background/Aims: Stress exacerbates neuron loss in many CNS injuries via the actions of adrenal glucocorticoid (GC) hormones. For some injuries, this GC endangerment of neurons is accompanied by greater immune cell activation in the CNS, a surprising outcome given the potent immunosuppressive properties of GCs. Methods: To determine whether the effects of GCs on inflammation contribute to neuron death or result from it, we tested whether nonsteroidal anti-inflammatory drugs could protect neurons from GCs during kainic acid excitotoxicity in adrenalectomized male rats. We next measured GC effects on (1) chemokine production (CCL2 and CINC-1), (2) signals that suppress immune activation (CX3CL1, CD22, CD200, and TGF-ß), and (3) NF-κB activity. Results: Concurrent treatment with minocycline, but not indomethacin, prevented GC endangerment. GCs did not substantially affect CCL2, CINC-1, or baseline NF-κB activity, but they did suppress CX3CL1, CX3CR1, and CD22 expression in the hippocampus - factors that normally restrain inflammatory responses. Conclusions: These findings demonstrate that cellular inflammation is not necessarily suppressed by GCs in the injured hippocampus; instead, GCs may worsen hippocampal neuron death, at least in part by increasing the neurotoxicity of CNS inflammation.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Michelle Y. Cheng; Alex G. Lee; Collin J. Culbertson; Guohua Sun; Rushi K. Talati; Nathan C. Manley; Xiaohan Li; Heng Zhao; David M. Lyons; Qun-Yong Zhou; Gary K. Steinberg; Robert M. Sapolsky
Stroke causes brain dysfunction and neuron death, and the lack of effective therapies heightens the need for new therapeutic targets. Here we identify prokineticin 2 (PK2) as a mediator for cerebral ischemic injury. PK2 is a bioactive peptide initially discovered as a regulator of gastrointestinal motility. Multiple biological roles for PK2 have been discovered, including circadian rhythms, angiogenesis, and neurogenesis. However, the role of PK2 in neuropathology is unknown. Using primary cortical cultures, we found that PK2 mRNA is up-regulated by several pathological stressors, including hypoxia, reactive oxygen species, and excitotoxic glutamate. Glutamate-induced PK2 expression is dependent on NMDA receptor activation and extracellular calcium. Enriched neuronal culture studies revealed that neurons are the principal source of glutamate-induced PK2. Using in vivo models of stroke, we found that PK2 mRNA is induced in the ischemic cortex and striatum. Central delivery of PK2 worsens infarct volume, whereas PK2 receptor antagonist decreases infarct volume and central inflammation while improving functional outcome. Direct central inhibition of PK2 using RNAi also reduces infarct volume. These findings indicate that PK2 can be activated by pathological stimuli such as hypoxia-ischemia and excitotoxic glutamate and identify PK2 as a deleterious mediator for cerebral ischemia.
Stem Cell Research & Therapy | 2014
Neha Karlupia; Nathan C. Manley; Kameshwar Prasad; Richard Schäfer; Gary K. Steinberg
IntroductionStroke is the second leading cause of death worldwide, claims six lives every 60 seconds, and is a leading cause of adult disability across the globe. Tissue plasminogen activator, the only United States Food and Drug Administration (FDA)-approved drug currently available, has a narrow therapeutic time window of less than 5 hours. In the past decade, cells derived from the human umbilical cord (HUC) have emerged as a potential therapeutic alternative for stroke; however, the most effective HUC-derived cell population remains unknown.MethodsWe compared three cell populations derived from the human umbilical cord: cord blood mononuclear cells (cbMNCs); cord blood mesenchymal stromal cells (cbMSCs), a subpopulation of cbMNCs; and cord matrix MSCs (cmMSCs). We characterized these cells in vitro with flow cytometry and assessed the cells’ in vivo efficacy in a 2-hour transient middle cerebral artery occlusion (MCAo) rat model of stroke. cbMNCs, cbMSCs, and cmMSCs were each transplanted intraarterially at 24 hours after stroke.ResultsA reduction in neurologic deficit and infarct area was observed in all three cell groups; however, this reduction was significantly enhanced in the cbMNC group compared with the cmMSC group. At 2 weeks after stroke, human nuclei-positive cells were present in the ischemic hemispheres of immunocompetent stroke rats in all three cell groups. Significantly decreased expression of rat brain-derived neurotrophic factor mRNA was observed in the ischemic hemispheres of all three cell-treated and phosphate-buffered saline (PBS) group animals compared with sham animals, although the decrease was least in cbMNC-treated animals. Significantly decreased expression of rat interleukin (IL)-2 mRNA and IL-6 mRNA was seen only in the cbMSC group. Notably, more severe complications (death, eye inflammation) were observed in the cmMSC group compared with the cbMNC and cbMSC groups.ConclusionsAll three tested cell types promoted recovery after stroke, but cbMNCs showed enhanced recovery and fewer complications compared with cmMSCs.
Experimental Neurology | 2008
Kevin L. Ju; Nathan C. Manley; Robert M. Sapolsky
A number of gene therapy approaches have been developed for protecting neurons from necrotic neurological insults. Such therapies are limited by the need for transcription and translation of the protective protein, delaying therapeutic impact. As an alternative, we explore the neuroprotective potential of protein therapy, using a fusion protein comprised of the death-suppressing BH4 domain of the Bcl-xL protein and the protein transduction domain of the human immunodeficiency virus Tat protein. This fusion protein decreased neurotoxicity caused by the excitotoxins glutamate and kainic acid in primary hippocampal cultures, and decreased hippocampal damage in vivo in an excitotoxic seizure model.
Journal of Neurochemistry | 2009
Ilona Zemlyak; Nathan C. Manley; Inna Vulih-Shultzman; Andrew B. Cutler; Kevin Graber; Robert M. Sapolsky; Illana Gozes
NAP (NAPVSIPQ, generic name, davunetide), a neuroprotective peptide in clinical development for neuroprotection against Alzheimer’s disease and other neurodegenerative indications, has been recently shown to provide protection against kainic acid excitotoxicity in hippocampal neuronal cultures. In vivo, kainic acid toxicity models status epilepticus that is associated with hippocampal cell death. Kainic acid toxicity has been previously suggested to involve the microtubule cytoskeleton and NAP is a microtubule‐interacting drug candidate. In the current study, kainic acid‐treated rats showed epileptic seizures and neuronal death. Injection of NAP into the dentate gyrus partially protected against kainic acid‐induced CA3 neuron death. Microarray analysis (composed of > 31 000 probe sets, analyzing over 30 000 transcripts and variants from over 25 000 well‐substantiated rat genes) in the kainic acid‐injured rat brain revealed multiple changes in gene expression, which were prevented, in part, by NAP treatment. Selected transcripts were further verified by reverse transcription coupled with quantitative real‐time polymerase chain reaction. Importantly, among the transcripts regulated by NAP were key genes associated with proconvulsant properties and with long‐lasting changes that underlie the epileptic state, including activin A receptor (associated with apoptosis), neurotensin (associated with proper neurotransmission) and the Wolfram syndrome 1 homolog (human, associated with neurodegeneration). These data suggest that NAP may provide neuroprotection in one of the most serious neurological conditions, epilepsy.