Nathan Cermak
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan Cermak.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Sangwon Byun; Sungmin Son; Dario Amodei; Nathan Cermak; Josephine Shaw; Joon Ho Kang; Vivian C. Hecht; Monte M. Winslow; Tyler Jacks; Parag Mallick; Scott R. Manalis
Metastasis requires the penetration of cancer cells through tight spaces, which is mediated by the physical properties of the cells as well as their interactions with the confined environment. Various microfluidic approaches have been devised to mimic traversal in vitro by measuring the time required for cells to pass through a constriction. Although a cell’s passage time is expected to depend on its deformability, measurements from existing approaches are confounded by a cells size and its frictional properties with the channel wall. Here, we introduce a device that enables the precise measurement of (i) the size of a single cell, given by its buoyant mass, (ii) the velocity of the cell entering a constricted microchannel (entry velocity), and (iii) the velocity of the cell as it transits through the constriction (transit velocity). Changing the deformability of the cell by perturbing its cytoskeleton primarily alters the entry velocity, whereas changing the surface friction by immobilizing positive charges on the constrictions walls primarily alters the transit velocity, indicating that these parameters can give insight into the factors affecting the passage of each cell. When accounting for cell buoyant mass, we find that cells possessing higher metastatic potential exhibit faster entry velocities than cells with lower metastatic potential. We additionally find that some cell types with higher metastatic potential exhibit greater than expected changes in transit velocities, suggesting that not only the increased deformability but reduced friction may be a factor in enabling invasive cancer cells to efficiently squeeze through tight spaces.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Selim Olcum; Nathan Cermak; Steven Charles Wasserman; Kathleen Christine; Hiroshi Atsumi; Kristofor Robert Payer; Wenjiang Shen; Jungchul Lee; Angela M. Belcher; Sangeeta N. Bhatia; Scott R. Manalis
Significance Naturally occurring and engineered nanoparticles (e.g., exosomes, viruses, protein aggregates, and self-assembled nanostructures) have size- and concentration-dependent functionality, yet existing characterization methods in solution are limited for diameters below ∼50 nm. In this study, we developed a nanomechanical resonator that can directly measure the mass of individual nanoparticles down to 10 nm with single-attogram (10−18 g) precision, enabling access to previously difficult-to-characterize natural and synthetic nanoparticles. Physical characterization of nanoparticles is required for a wide range of applications. Nanomechanical resonators can quantify the mass of individual particles with detection limits down to a single atom in vacuum. However, applications are limited because performance is severely degraded in solution. Suspended micro- and nanochannel resonators have opened up the possibility of achieving vacuum-level precision for samples in the aqueous environment and a noise equivalent mass resolution of 27 attograms in 1-kHz bandwidth was previously achieved by Lee et al. [(2010) Nano Lett 10(7):2537–2542]. Here, we report on a series of advancements that have improved the resolution by more than 30-fold, to 0.85 attograms in the same bandwidth, approaching the thermomechanical noise limit and enabling precise quantification of particles down to 10 nm with a throughput of more than 18,000 particles per hour. We demonstrate the potential of this capability by comparing the mass distributions of exosomes produced by different cell types and by characterizing the yield of self-assembled DNA nanoparticle structures.
PLOS ONE | 2013
Francisco Feijó Delgado; Nathan Cermak; Vivian C. Hecht; Sungmin Son; Yingzhong Li; Scott M. Knudsen; Selim Olcum; John M. Higgins; Jianzhu Chen; William H. Grover; Scott R. Manalis
We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell’s water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.
Nature Biotechnology | 2016
Mark M. Stevens; Cecile L. Maire; Nigel Chou; Mark A. Murakami; David S. Knoff; Yuki Kikuchi; Robert J. Kimmerling; Huiyun Liu; Samer Haidar; Nicholas L Calistri; Nathan Cermak; Selim Olcum; Nicolas Cordero; Ahmed Idbaih; Patrick Y. Wen; David M. Weinstock; Keith L. Ligon; Scott R. Manalis
Assays that can determine the response of tumor cells to cancer therapeutics could greatly aid the selection of drug regimens for individual patients. However, the utility of current functional assays is limited, and predictive genetic biomarkers are available for only a small fraction of cancer therapies. We found that the single-cell mass accumulation rate (MAR), profiled over many hours with a suspended microchannel resonator, accurately defined the drug sensitivity or resistance of glioblastoma and B-cell acute lymphocytic leukemia cells. MAR revealed heterogeneity in drug sensitivity not only between different tumors, but also within individual tumors and tumor-derived cell lines. MAR measurement predicted drug response using samples as small as 25 μl of peripheral blood while maintaining cell viability and compatibility with downstream characterization. MAR measurement is a promising approach for directly assaying single-cell therapeutic responses and for identifying cellular subpopulations with phenotypic resistance in heterogeneous tumors.
The ISME Journal | 2017
Nathan Cermak; Jamie William Becker; Scott M. Knudsen; Sallie W. Chisholm; Scott R. Manalis; Martin F. Polz
Microbes are an essential component of marine food webs and biogeochemical cycles, and therefore precise estimates of their biomass are of significant value. Here, we measured single-cell biomass distributions of isolates from several numerically abundant marine bacterial groups, including Pelagibacter (SAR11), Prochlorococcus and Vibrio using a microfluidic mass sensor known as a suspended microchannel resonator (SMR). We show that the SMR can provide biomass (dry mass) measurements for cells spanning more than two orders of magnitude and that these estimates are consistent with other independent measures. We find that Pelagibacterales strain HTCC1062 has a median biomass of 11.9±0.7 fg per cell, which is five- to twelve-fold smaller than the median Prochlorococcus cell’s biomass (depending upon strain) and nearly 100-fold lower than that of rapidly growing V. splendidus strain 13B01. Knowing the biomass contributions from various taxonomic groups will provide more precise estimates of total marine biomass, aiding models of nutrient flux in the ocean.
bioRxiv | 2018
Robert J. Kimmerling; Sanjay Prakadan; Alejandro J Gupta; Nicholas L Calistri; Mark M. Stevens; Selim Olcum; Nathan Cermak; Riley S Drake; Alex K. Shalek; Scott R. Manalis
We introduce a microfluidic platform that enables single-cell mass and growth rate measurements upstream of single-cell RNA-sequencing (scRNA-seq) to generate paired single-cell biophysical and transcriptional data sets. Biophysical measurements are collected with a serial suspended microchannel resonator platform (sSMR) that utilizes automated fluidic state switching to load individual cells at fixed intervals, achieving a throughput of 120 cells per hour. Each single-cell is subsequently captured downstream for linked molecular analysis using an automated collection system. From linked measurements of a murine leukemia (L1210) and pro-B cell line (FL5.12), we identify gene expression signatures that correlate significantly with cell mass and growth rate. In particular, we find that both cell lines display a cell-cycle signature that correlates with cell mass, with early and late cell-cycle signatures significantly enriched amongst genes with negative and positive correlations with mass, respectively. FL5.12 cells also show a significant correlation between single-cell growth efficiency and a G1-S transition signature, providing additional transcriptional evidence for a phenomenon previously observed through biophysical measurements alone. Importantly, the throughput and speed of our platform allows for the characterization of phenotypes in dynamic cellular systems. As a proof-of-principle, we apply our system to characterize activated murine CD8+ T cells and uncover two unique features of CD8+ T cells as they become proliferative in response to activation: i) the level of coordination between cell cycle gene expression and cell mass increases, and ii) translation-related gene expression increases and shows a correlation with single-cell growth efficiency. Overall, our approach provides a new means of characterizing the transcriptional mechanisms of normal and dysfunctional cellular mass and growth rate regulation across a range of biological contexts.
bioRxiv | 2018
Tim N Enke; Manoshi Sen Datta; Julia Schwartzman; Nathan Cermak; Desiree Schmitz; Julien Barrere; Otto X. Cordero
Many complex biological systems such as metabolic networks can be divided into functional and organizational subunits, called modules, which provide the flexibility to assemble novel multi-functional hierarchies by a mix and match of simpler components. Here we show that polysaccharide-degrading microbial communities in the ocean can also assemble in a modular fashion. Using synthetic particles made of a variety of polysaccharides commonly found in the ocean, we showed that the particle colonization dynamics of natural bacterioplankton assemblages can be understood as the aggregation of species modules of two main types: a first module type made of narrow niche-range primary degraders, whose dynamics are controlled by particle polysaccharide composition, and a second module type containing broad niche-range, substrate-independent taxa whose dynamics are controlled by interspecific interactions, in particular cross-feeding via organic acids, amino acids and other metabolic byproducts. As a consequence of this modular logic, communities can be predicted to assemble by a sum of substrate-specific primary degrader modules, one for each complex polysaccharide in the particle, connected to a single broad-niche range consumer module. We validate this model by showing that a linear combination of the communities on single-polysaccharide particles accurately predicts community composition on mixed-polysaccharide particles. Our results suggest thus that the assembly of heterotrophic communities that degrade complex organic materials follow simple design principles that can be exploited to engineer heterotrophic microbiomes.
Prof. Manalis via Howard Silver | 2016
Nathan Cermak; Jamie William Becker; Scott M. Knudsen; Sallie W. Chisholm; Scott R. Manalis; Martin F. Polz
PMC | 2016
Nathan Cermak; Mark A. Murakami; Masaaki Ogawa; Vincent Agache; Francois Baleras; David M. Weinstock; Selim Olcum; Francisco Feijó Delgado; Steven Charles Wasserman; Kristofor Robert Payer; Scott M. Knudsen; Robert J. Kimmerling; Mark M. Stevens; Yuki Kikuchi; Arzu Sandikci; Scott R. Manalis
Prof. Manalis via Howard Silver | 2015
Selim Olcum; Nathan Cermak; Scott R. Manalis