Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan J. Pavlos is active.

Publication


Featured researches published by Nathan J. Pavlos.


Arthritis Research & Therapy | 2013

Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes

Guangyi Li; Jimin Yin; Junjie Gao; Tak Sum Cheng; Nathan J. Pavlos; Changqing Zhang; Ming H. Zheng

Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subchondral bone sclerosis, together with progressive cartilage degradation, is widely considered as a hallmark of OA. Despite the increase in bone volume fraction, subchondral bone is hypomineralized, due to abnormal bone remodeling. Some histopathological changes in the subchondral bone have also been detected, including microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes basic features of the osteochondral junction, which comprises subchondral bone and articular cartilage. Importantly, we discuss risk factors influencing subchondral bone integrity. We also focus on the microarchitectural and histopathological changes of subchondral bone in OA, and provide an overview of their potential contribution to the progression of OA. A hypothetical model for the pathogenesis of OA is proposed.


The Journal of Neuroscience | 2010

Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein.

Mads Grønborg; Nathan J. Pavlos; Irene Brunk; John Jia En Chua; Agnieszka Münster-Wandowski; Dietmar Riedel; Gudrun Ahnert-Hilger; Henning Urlaub; Reinhard Jahn

Synaptic vesicles (SVs) store neurotransmitters and release them by exocytosis. The vesicular neurotransmitter transporters discriminate which transmitter will be sequestered and stored by the vesicles. However, it is unclear whether the neurotransmitter phenotype of SVs is solely defined by the transporters or whether it is associated with additional proteins. Here we have compared the protein composition of SVs enriched in vesicular glutamate (VGLUT-1) and GABA transporters (VGAT), respectively, using quantitative proteomics. Of >450 quantified proteins, ∼50 were differentially distributed between the populations, with only few of them being specific for SVs. Of these, the most striking differences were observed for the zinc transporter ZnT3 and the vesicle proteins SV2B and SV31 that are associated preferentially with VGLUT-1 vesicles, and for SV2C that is associated mainly with VGAT vesicles. Several additional proteins displayed a preference for VGLUT-1 vesicles including, surprisingly, synaptophysin, synaptotagmins, and syntaxin 1a. Moreover, MAL2, a membrane protein of unknown function distantly related to synaptophysins and SCAMPs, cofractionated with VGLUT-1 vesicles. Both subcellular fractionation and immunolocalization at the light and electron microscopic level revealed that MAL2 is a bona-fide membrane constituent of SVs that is preferentially associated with VGLUT-1-containing nerve terminals. We conclude that SVs specific for different neurotransmitters share the majority of their protein constituents, with only few vesicle proteins showing preferences that, however, are nonexclusive, thus confirming that the vesicular transporters are the only components essential for defining the neurotransmitter phenotype of a SV.


The International Journal of Biochemistry & Cell Biology | 2012

V-ATPases in osteoclasts: Structure, function and potential inhibitors of bone resorption

An Qin; Tak Sum Cheng; Nathan J. Pavlos; Zhen Lin; Kerong Dai; Ming Zheng

The vacuolar-type H(+)-ATPase (V-ATPase) proton pump is a macromolecular complex composed of at least 14 subunits organized into two functional domains, V(1) and V(0). The complex is located on the ruffled border plasma membrane of bone-resorbing osteoclasts, mediating extracellular acidification for bone demineralization during bone resorption. Genetic studies from mice to man implicate a critical role for V-ATPase subunits in osteoclast-related diseases including osteopetrosis and osteoporosis. Thus, the V-ATPase complex is a potential molecular target for the development of novel anti-resorptive agents useful for the treatment of osteolytic diseases. Here, we review the current structure and function of V-ATPase subunits, emphasizing their exquisite roles in osteoclastic function. In addition, we compare several distinct classes of V-ATPase inhibitors with specific inhibitory effects on osteoclasts. Understanding the structure-function relationship of the osteoclast V-ATPase may lead to the development of osteoclast-specific V-ATPase inhibitors that may serve as alternative therapies for the treatment of osteolytic diseases.


Journal of Cellular Biochemistry | 2003

Effects of Bafilomycin A1: an inhibitor of vacuolar H (+)-ATPases on endocytosis and apoptosis in RAW cells and RAW cell-derived osteoclasts.

Jiake Xu; Hao Ting Feng; Cathy Wang; Kirk H. M. Yip; Nathan J. Pavlos; John M. Papadimitriou; David Wood; Ming H. Zheng

Bafilomycin A1, a specific inhibitor of V‐ATPases, is a potent inhibitor of bone resorption, but the underlying mechanisms of its action remain unclear. In this study, we investigated the effect of Bafilomycin A1 on endocytosis and apoptosis in RAW cells and RAW cell‐derived osteoclasts. Quantitative analysis by flow cytometry showed that Bafilomycin A1 increased total transferrin levels when RAW cells were exposed to labeled transferrin and decreased the total uptake of Dextran‐rhodamine B, both in a dose‐ and time‐dependent fashion, indicating that Bafilomycin influences receptor‐mediated and fluid phase endocytosis in these cells. Furthermore, Bafilomycin A1 induced apoptosis of RAW cells in a dose dependent manner as evidenced by Annexin V flow cytometry. The action of Bafilomycin A1 on endocytotic events appeared to be more sensitive and occurred earlier than on its apoptosis inducing effects, suggesting that interrupting of endocytosis might be an early sign of Bafilomycin‐mediated osteoclast inhibition. Semi‐quantitative RT‐PCR analysis showed that the gene transcripts of putative Bafilomycin A1 binding subunit, V‐ATPase‐subunit a3, were expressed in the preosteoclastic RAW cell line, and up‐regulated during RANKL‐induced osteoclastogenesis. Osteoclasts treated with Bafilomycin A1 exhibited apoptosis as well as altered cellular localization of Transferrin Alexa 647. Given that endocytosis and apoptosis are important processes during osteoclastic bone resorption, the potent effect of Bafilomycin A1 on endocytosis and apoptosis of osteoclasts and their precursor cells may in part account for Bafilomycin A1 inhibited bone resorption. J. Cell. Biochem. 88: 1256–1264, 2003.


Molecular and Cellular Biology | 2005

Rab3D regulates a novel vesicular trafficking pathway that is required for osteoclastic bone resorption

Nathan J. Pavlos; Jiake Xu; Dietmar Riedel; J.S.G. Yeoh; Steven L. Teitelbaum; John C. Papadimitriou; Reinhard Jahn; F.P. Ross; Ming Zheng

ABSTRACT Rab3 proteins are a subfamily of GTPases, known to mediate membrane transport in eukaryotic cells and play a role in exocytosis. Our data indicate that Rab3D is the major Rab3 species expressed in osteoclasts. To investigate the role of Rab3D in osteoclast physiology we examined the skeletal architecture of Rab3D-deficient mice and found an osteosclerotic phenotype. Although basal osteoclast number in null animals is normal the total eroded surface is significantly reduced, suggesting that the resorptive defect is due to attenuated osteoclast activity. Consistent with this hypothesis, ultrastructural analysis reveals that Rab3D−/− osteoclasts exhibit irregular ruffled borders. Furthermore, while overexpression of wild-type, constitutively active, or prenylation-deficient Rab3D has no significant effects, overexpression of GTP-binding-deficient Rab3D impairs bone resorption in vitro. Finally, subcellular localization studies reveal that, unlike wild-type or constitutively active Rab3D, which associate with a nonendosomal/lysosomal subset of post-trans-Golgi network (TGN) vesicles, inactive Rab3D localizes to the TGN and inhibits biogenesis of Rab3D-bearing vesicles. Collectively, our data suggest that Rab3D modulates a post-TGN trafficking step that is required for osteoclastic bone resorption.


PLOS ONE | 2012

Prevention of Wear Particle-Induced Osteolysis by a Novel V-ATPase Inhibitor Saliphenylhalamide through Inhibition of Osteoclast Bone Resorption

An Qin; Tak Sum Cheng; Zhen Lin; Lei Cao; Shek Man Chim; Nathan J. Pavlos; Jiake Xu; Minghao Zheng; Kerong Dai

Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening) is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis) by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.


The Journal of Neuroscience | 2010

Quantitative analysis of synaptic vesicle Rabs uncovers distinct yet overlapping roles for Rab3a and Rab27b in Ca2+-triggered exocytosis.

Nathan J. Pavlos; Mads Grønborg; Dietmar Riedel; John Jia En Chua; Janina Boyken; Tobias H. Kloepper; Henning Urlaub; Silvio O. Rizzoli; Reinhard Jahn

Rab GTPases are molecular switches that orchestrate protein complexes before membrane fusion reactions. In synapses, Rab3 and Rab5 proteins have been implicated in the exo-endocytic cycling of synaptic vesicles (SVs), but an involvement of additional Rabs cannot be excluded. Here, combining high-resolution mass spectrometry and chemical labeling (iTRAQ) together with quantitative immunoblotting and fluorescence microscopy, we have determined the exocytotic (Rab3a, Rab3b, Rab3c, and Rab27b) and endocytic (Rab4b, Rab5a/b, Rab10, Rab11b, and Rab14) Rab machinery of SVs. Analysis of two closely related proteins, Rab3a and Rab27b, revealed colocalization in synaptic nerve terminals, where they reside on distinct but overlapping SV pools. Moreover, whereas Rab3a readily dissociates from SVs during Ca2+-triggered exocytosis, and is susceptible to membrane extraction by Rab-GDI, Rab27b persists on SV membranes upon stimulation and is resistant to GDI-coupled Rab retrieval. Finally, we demonstrate that selective modulation of the GTP/GDP switch mechanism of Rab27b impairs SV recycling, suggesting that Rab27b, probably in concert with Rab3s, is involved in SV exocytosis.


eLife | 2015

The GTPase Rab26 links synaptic vesicles to the autophagy pathway

Beyenech Binotti; Nathan J. Pavlos; Dietmar Riedel; Dirk Wenzel; Gerd Vorbrüggen; Amanda M. Schalk; Karin Kühnel; Janina Boyken; Christian Erck; Henrik Martens; John Jia En Chua; Reinhard Jahn

Small GTPases of the Rab family not only regulate target recognition in membrane traffic but also control other cellular functions such as cytoskeletal transport and autophagy. Here we show that Rab26 is specifically associated with clusters of synaptic vesicles in neurites. Overexpression of active but not of GDP-preferring Rab26 enhances vesicle clustering, which is particularly conspicuous for the EGFP-tagged variant, resulting in a massive accumulation of synaptic vesicles in neuronal somata without altering the distribution of other organelles. Both endogenous and induced clusters co-localize with autophagy-related proteins such as Atg16L1, LC3B and Rab33B but not with other organelles. Furthermore, Atg16L1 appears to be a direct effector of Rab26 and binds Rab26 in its GTP-bound form, albeit only with low affinity. We propose that Rab26 selectively directs synaptic and secretory vesicles into preautophagosomal structures, suggesting the presence of a novel pathway for degradation of synaptic vesicles. DOI: http://dx.doi.org/10.7554/eLife.05597.001


Journal of Biological Chemistry | 2009

Myocyte Enhancer Factor 2 and Microphthalmia-associated Transcription Factor Cooperate with NFATc1 to Transactivate the V-ATPase d2 Promoter during RANKL-induced Osteoclastogenesis

Haotian Feng; Taksum Cheng; James H. Steer; David A. Joyce; Nathan J. Pavlos; ChengLoon Leong; Jasreen Kular; Jianzhong Liu; Xu Feng; Ming H. Zheng; Jiake Xu

The V-ATPase d2 protein constitutes an important subunit of the V-ATPase proton pump, which regulates bone homeostasis; however, currently little is known about its transcriptional regulation. Here, in an attempt to understand regulation of the V-ATPase d2 promoter, we identified the presence of NFATc1, microphthalmia-associated transcription factor (MITF)- and myocyte enhancer factor 2 (MEF2)-binding sites within the V-ATPase d2 promoter using complementary bioinformatic analyses, chromatin immunoprecipitation, and electromobility shift assay. Intriguingly, activation of the V-ATPase d2 promoter by NFATc1 was enhanced by either MEF2 or MITF overexpression. By comparison, coexpression of MITF and MEF2 did not further enhance V-ATPase d2 promoter activity above that of expression of MITF alone. Consistent with a role in transcriptional regulation, both NFATc1 and MITF proteins translocated from the cytosol to the nucleus during RANKL-induced osteoclastogenesis, whereas MEF2 persisted in the nucleus of both osteoclasts and their mononuclear precursors. Targeted mutation of the putative NFATc1-, MITF-, or MEF2-binding sites in the V-ATPase d2 promoter impaired its transcriptional activation. Additionally retroviral overexpression of MITF or MEF2 in RAW264.7 cells potentiated RANKL-induced osteoclastogenesis and V-ATPase d2 gene expression. Based on these data, we propose that MEF2 and MITF function cooperatively with NFATc1 to transactivate the V-ATPase d2 promoter during RANKL-induced osteoclastogenesis.


Journal of Cellular Physiology | 2009

Caffeic acid phenethyl ester, an active component of honeybee propolis attenuates osteoclastogenesis and bone resorption via the suppression of RANKL-induced NF-κB and NFAT activity.

Estabelle S.M. Ang; Nathan J. Pavlos; Lee Y. Chai; Ming Qi; Tak Sum Cheng; James H. Steer; David A. Joyce; Ming H. Zheng; Jiake Xu

Receptor activator NF‐κB ligand (RANKL)‐activated signaling is essential for osteoclast differentiation, activation and survival. Caffeic acid phenethyl ester (CAPE), a natural NF‐κB inhibitor from honeybee propolis has been shown to have anti‐tumor and anti‐inflammatory properties. In this study, we investigated the effect of CAPE on the regulation of RANKL‐induced osteoclastogenesis, bone resorption and signaling pathways. Low concentrations of CAPE (<1 µM) dose dependently inhibited RANKL‐induced osteoclastogenesis in RAW264.7 cell and bone marrow macrophage (BMM) cultures, as well as decreasing the capacity of human osteoclasts to resorb bone. CAPE inhibited both constitutive and RANKL‐induced NF‐κB and NFAT activation, concomitant with delayed IκBα degradation and inhibition of p65 nuclear translocation. At higher concentrations, CAPE induced apoptosis and caspase 3 activities of RAW264.7 and disrupts the microtubule network in osteoclast like (OCL) cells. Taken together, our findings demonstrate that inhibition of NF‐κB and NFAT activation by CAPE results in the attenuation of osteoclastogenesis and bone resorption, implying that CAPE is a potential treatment for osteolytic bone diseases. J. Cell. Physiol. 221: 642–649, 2009.

Collaboration


Dive into the Nathan J. Pavlos's collaboration.

Top Co-Authors

Avatar

Jiake Xu

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Ming H. Zheng

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Tak Sum Cheng

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Haotian Feng

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Minghao Zheng

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Taksum Cheng

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Jennifer Tickner

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

An Qin

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Estabelle S.M. Ang

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

James H. Steer

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge