Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan S. Abell is active.

Publication


Featured researches published by Nathan S. Abell.


Nucleic Acids Research | 2013

A Myc–microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes

Damon Polioudakis; Akshay Bhinge; Patrick J Killion; Bum Kyu Lee; Nathan S. Abell; Vishwanath R. Iyer

The transition of mammalian cells from quiescence to proliferation is accompanied by the differential expression of several microRNAs (miRNAs) and transcription factors. However, the interplay between transcription factors and miRNAs in modulating gene regulatory networks involved in human cell proliferation is largely unknown. Here we show that the miRNA miR-22 promotes proliferation in primary human cells, and through a combination of Argonaute-2 immunoprecipitation and reporter assays, we identified multiple novel targets of miR-22, including several cell-cycle arrest genes that mediate the effects of the tumor-suppressor p53. In addition, we found that miR-22 suppresses interferon gene expression by directly targeting high mobility group box-1 and interferon regulatory factor (IRF)-5, preventing activation of IRF3 and NF-κB, which are activators of interferon genes. The expression of interferon genes is elevated in quiescent cells and their expression is inhibitory for cell proliferation. In addition, we find that miR-22 is activated by the transcription factor Myc when quiescent cells enter proliferation and that miR-22 inhibits the Myc transcriptional repressor MXD4, mediating a feed-forward loop to elevate Myc expression levels. Our results implicate miR-22 in downregulating the anti-proliferative p53 and interferon pathways and reveal a new transcription factor–miRNA network that regulates the transition of primary human cells from quiescence to proliferation.


bioRxiv | 2016

Local genetic effects on gene expression across 44 human tissues

François Aguet; Andrew Anand Brown; Stephane E. Castel; Joe R. Davis; Pejman Mohammadi; Ayellet V. Segrè; Zachary Zappala; Nathan S. Abell; Laure Frésard; Eric R. Gamazon; Ellen T. Gelfand; Machael J Gloudemans; Yuan He; Farhad Hormozdiari; Xiao Li; Xin Li; Boxiang Liu; Diego Garrido-Martín; Halit Ongen; John Palowitch; YoSon Park; Christine B. Peterson; Gerald Quon; Stephan Ripke; Andrey A. Shabalin; Tyler C. Shimko; Benjamin J. Strober; Timothy J. Sullivan; Nicole A. Teran; Emily K. Tsang

Expression quantitative trait locus (eQTL) mapping provides a powerful means to identify functional variants influencing gene expression and disease pathogenesis. We report the identification of cis-eQTLs from 7,051 post-mortem samples representing 44 tissues and 449 individuals as part of the Genotype-Tissue Expression (GTEx) project. We find a cis-eQTL for 88% of all annotated protein-coding genes, with one-third having multiple independent effects. We identify numerous tissue-specific cis-eQTLs, highlighting the unique functional impact of regulatory variation in diverse tissues. By integrating large-scale functional genomics data and state-of-the-art fine-mapping algorithms, we identify multiple features predictive of tissue-specific and shared regulatory effects. We improve estimates of cis-eQTL sharing and effect sizes using allele specific expression across tissues. Finally, we demonstrate the utility of this large compendium of cis-eQTLs for understanding the tissue-specific etiology of complex traits, including coronary artery disease. The GTEx project provides an exceptional resource that has improved our understanding of gene regulation across tissues and the role of regulatory variation in human genetic diseases.


BMC Genomics | 2015

miR-503 represses human cell proliferation and directly targets the oncogene DDHD2 by non-canonical target pairing

Damon Polioudakis; Nathan S. Abell; Vishwanath R. Iyer

BackgroundThe pathways regulating the transition of mammalian cells from quiescence to proliferation are mediated by multiple miRNAs. Despite significant improvements in our understanding of miRNA targeting, the majority of miRNA regulatory networks are still largely unknown and require experimental validation.ResultsHere we identified miR-503, miR-103, and miR-494 as negative regulators of proliferation in primary human cells. We experimentally determined their genome wide target profiles using RNA-induced silencing complex (RISC) immunoprecipitations and gene expression profiling. Analysis of the genome wide target profiles revealed evidence of extensive regulation of gene expression through non-canonical target pairing by miR-503. We identified the proto-oncogene DDHD2 as a target of miR-503 that requires pairing outside of the canonical 5′ seed region of miR-503, representing a novel mode of miRNA-target pairing. Further bioinformatics analysis implicated miR-503 and DDHD2 in breast cancer tumorigenesis.ConclusionsOur results provide an extensive genome wide set of targets for miR-503, miR-103, and miR-494, and suggest that miR-503 may act as a tumor suppressor in breast cancer by its direct non-canonical targeting of DDHD2.


PLOS ONE | 2015

MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes

Damon Polioudakis; Nathan S. Abell; Vishwanath R. Iyer

miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191’s regulation of primary human fibroblast proliferation.


G3: Genes, Genomes, Genetics | 2017

Small RNA Sequencing in Cells and Exosomes Identifies eQTLs and 14q32 as a Region of Active Export

Emily K. Tsang; Nathan S. Abell; Xin Li; Vanessa Anaya; Konrad J. Karczewski; David Knowles; Raymond G. Sierra; Kevin S. Smith; Stephen B. Montgomery

Exosomes are small extracellular vesicles that carry heterogeneous cargo, including RNA, between cells. Increasing evidence suggests that exosomes are important mediators of intercellular communication and biomarkers of disease. Despite this, the variability of exosomal RNA between individuals has not been well quantified. To assess this variability, we sequenced the small RNA of cells and exosomes from a 17-member family. Across individuals, we show that selective export of miRNAs occurs not only at the level of specific transcripts, but that a cluster of 74 mature miRNAs on chromosome 14q32 is massively exported in exosomes while mostly absent from cells. We also observe more interindividual variability between exosomal samples than between cellular ones and identify four miRNA expression quantitative trait loci shared between cells and exosomes. Our findings indicate that genomically colocated miRNAs can be exported together and highlight the variability in exosomal miRNA levels between individuals as relevant for exosome use as diagnostics.


Journal of the American Chemical Society | 2017

Click Quantitative Mass Spectrometry Identifies PIWIL3 as a Mechanistic Target of RNA Interference Activator Enoxacin in Cancer Cells

Nathan S. Abell; Marvin Mercado; Tatiana Cañeque; Raphaël Rodriguez; Blerta Xhemalce

Enoxacin is a small molecule that stimulates RNA interference (RNAi) and acts as a growth inhibitor selectively in cancer but not in untransformed cells. Here, we used alkenox, a clickable enoxacin surrogate, coupled with quantitative mass spectrometry, to identify PIWIL3 as a mechanistic target of enoxacin. PIWIL3 is an Argonaute protein of the PIWI subfamily that is mainly expressed in the germline and that mediates RNAi through piRNAs. Our results suggest that cancer cells re-express PIWIL3 to repress RNAi through miRNAs and thus open a new opportunity for cancer-specific targeting.


Cell Reports | 2018

Crosstalk between the RNA Methylation and Histone-Binding Activities of MePCE Regulates P-TEFb Activation on Chromatin

Samantha B. Shelton; Nakul M. Shah; Nathan S. Abell; Sravan K. Devanathan; Marvin Mercado; Blerta Xhemalce

RNAP II switching from the paused to the productive transcription elongation state is a pivotal regulatory step that requires specific phosphorylations catalyzed by the P-TEFb kinase. Nucleosolic P-TEFb activity is inhibited by its interaction with the ribonuclear protein complex built around the 7SK small nuclear RNA (7SK snRNP). MePCE is the RNA methyltransferase that methylates and stabilizes 7SK in the nucleosol. Here, we report that MePCE also binds chromatin through the histone H4 tail to serve as a P-TEFb activator at specific genes important for cellular identity. Notably, this histone binding abolishes MePCEs RNA methyltransferase activity toward 7SK, which explains why MePCE-bound P-TEFb on chromatin may not be associated with the full 7SK snRNP and is competent for RNAP II activation. Overall, our results suggest that crosstalk between the histone-binding and RNA methylation activities of MePCE regulates P-TEFb activation on chromatin in a 7SK- and Brd4-independent manner.


bioRxiv | 2018

Ocular disease mechanisms elucidated by genetics of human fetal retinal pigment epithelium gene expression

Boxiang Liu; Melissa A. Calton; Nathan S. Abell; Gillie Benchorin; Michael J. Gloudemans; Ming Chen; Jane Hu; Xin Li; Brunilda Balliu; Dean Bok; Stephen B. Montgomery; Douglas Vollrath

The eye is an intricate organ with limited representation in large-scale functional genomics datasets. The retinal pigment epithelium (RPE) serves vital roles in ocular development and retinal homeostasis. We interrogated the genetics of gene expression of cultured human fetal RPE (fRPE) cells under two metabolic conditions. Genes with disproportionately high fRPE expression are enriched for genes related to inherited ocular diseases. Variants near these fRPE-selective genes explain a larger fraction of risk for both age-related macular degeneration (AMD) and myopia than variants near genes enriched in 53 other human tissues. Increased mitochondrial oxidation of glutamine by fRPE promoted expression of lipid synthesis genes implicated in AMD. Expression and splice quantitative trait loci (e/sQTL) analysis revealed shared and metabolic condition-specific loci of each type and several eQTL not previously described in any tissue. Fine mapping of fRPE e/sQTL across AMD and myopia genome-wide association data suggests new candidate genes, and mechanisms by which the same common variant of RDH5 contributes to both increased AMD risk and decreased myopia risk. Our study highlights the unique transcriptomic characteristics of fRPE and provides a resource to connect e/sQTL in a critical ocular cell type to monogenic and complex eye disorders.


Angewandte Chemie | 2017

Chromatin Regulates Genome Targeting with Cisplatin

Emmanouil Zacharioudakis; Poonam Agarwal; Alexandra Bartoli; Nathan S. Abell; Lavaniya Kunalingam; Valérie Bergoglio; Blerta Xhemalce; Kyle M. Miller; Raphaël Rodriguez

Collaboration


Dive into the Nathan S. Abell's collaboration.

Top Co-Authors

Avatar

Blerta Xhemalce

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Damon Polioudakis

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Vishwanath R. Iyer

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Xin Li

Stanford University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raphaël Rodriguez

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Akshay Bhinge

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge