Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen B. Montgomery is active.

Publication


Featured researches published by Stephen B. Montgomery.


Nature | 2010

Integrating common and rare genetic variation in diverse human populations.

David Altshuler; Richard A. Gibbs; Leena Peltonen; Emmanouil T. Dermitzakis; Stephen F. Schaffner; Fuli Yu; Penelope E. Bonnen; de Bakker Pi; Panos Deloukas; Stacey Gabriel; R. Gwilliam; Sarah Hunt; Michael Inouye; Xiaoming Jia; Aarno Palotie; Melissa Parkin; Pamela Whittaker; Kyle Chang; Alicia Hawes; Lora Lewis; Yanru Ren; David A. Wheeler; Donna M. Muzny; C. Barnes; Katayoon Darvishi; Joshua M. Korn; Kristiansson K; Cin-Ty A. Lee; McCarrol Sa; James Nemesh

Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called ‘HapMap 3’, includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of ≤5%, and demonstrated the feasibility of imputing newly discovered CNPs and SNPs. This expanded public resource of genome variants in global populations supports deeper interrogation of genomic variation and its role in human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.


Nature Genetics | 2007

Population genomics of human gene expression

Barbara E. Stranger; Alexandra C. Nica; Matthew S. Forrest; Antigone S. Dimas; Christine P. Bird; Claude Beazley; Catherine E. Ingle; Mark Dunning; Paul Flicek; Daphne Koller; Stephen B. Montgomery; Simon Tavaré; Panagiotis Deloukas; Emmanouil T. Dermitzakis

Genetic variation influences gene expression, and this variation in gene expression can be efficiently mapped to specific genomic regions and variants. Here we have used gene expression profiling of Epstein-Barr virus–transformed lymphoblastoid cell lines of all 270 individuals genotyped in the HapMap Consortium to elucidate the detailed features of genetic variation underlying gene expression variation. We find that gene expression is heritable and that differentiation between populations is in agreement with earlier small-scale studies. A detailed association analysis of over 2.2 million common SNPs per population (5% frequency in HapMap) with gene expression identified at least 1,348 genes with association signals in cis and at least 180 in trans. Replication in at least one independent population was achieved for 37% of cis signals and 15% of trans signals, respectively. Our results strongly support an abundance of cis-regulatory variation in the human genome. Detection of trans effects is limited but suggests that regulatory variation may be the key primary effect contributing to phenotypic variation in humans. We also explore several methodologies that improve the current state of analysis of gene expression variation.


Nature | 2013

Transcriptome and genome sequencing uncovers functional variation in humans.

Tuuli Lappalainen; Michael Sammeth; Marc R. Friedländer; Peter A. C. 't Hoen; Jean Monlong; Manuel A. Rivas; Mar Gonzàlez-Porta; Natalja Kurbatova; Thasso Griebel; Pedro G. Ferreira; Matthias Barann; Thomas Wieland; Liliana Greger; M. van Iterson; Jonas Carlsson Almlöf; Paolo Ribeca; Irina Pulyakhina; Daniela Esser; Thomas Giger; Andrew Tikhonov; Marc Sultan; G. Bertier; Daniel G. MacArthur; Monkol Lek; Esther Lizano; Henk P. J. Buermans; Ismael Padioleau; Thomas Schwarzmayr; Olof Karlberg; Halit Ongen

Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project—the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome.


Science | 2012

A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes

Daniel G. MacArthur; Suganthi Balasubramanian; Adam Frankish; Ni Huang; James A. Morris; Klaudia Walter; Luke Jostins; Lukas Habegger; Joseph K. Pickrell; Stephen B. Montgomery; Cornelis A. Albers; Zhengdong D. Zhang; Donald F. Conrad; Gerton Lunter; Hancheng Zheng; Qasim Ayub; Mark A. DePristo; Eric Banks; Min Hu; Robert E. Handsaker; Jeffrey A. Rosenfeld; Menachem Fromer; Mike Jin; Xinmeng Jasmine Mu; Ekta Khurana; Kai Ye; Mike Kay; Gary Saunders; Marie-Marthe Suner; Toby Hunt

Defective Gene Detective Identifying genes that give rise to diseases is one of the major goals of sequencing human genomes. However, putative loss-of-function genes, which are often some of the first identified targets of genome and exome sequencing, have often turned out to be sequencing errors rather than true genetic variants. In order to identify the true scope of loss-of-function genes within the human genome, MacArthur et al. (p. 823; see the Perspective by Quintana-Murci) extensively validated the genomes from the 1000 Genomes Project, as well as an additional European individual, and found that the average person has about 100 true loss-of-function alleles of which approximately 20 have two copies within an individual. Because many known disease-causing genes were identified in “normal” individuals, the process of clinical sequencing needs to reassess how to identify likely causative alleles. Validation of predicted nonfunctional alleles in the human genome affects the medical interpretation of genomic analyses. Genome-sequencing studies indicate that all humans carry many genetic variants predicted to cause loss of function (LoF) of protein-coding genes, suggesting unexpected redundancy in the human genome. Here we apply stringent filters to 2951 putative LoF variants obtained from 185 human genomes to determine their true prevalence and properties. We estimate that human genomes typically contain ~100 genuine LoF variants with ~20 genes completely inactivated. We identify rare and likely deleterious LoF alleles, including 26 known and 21 predicted severe disease–causing variants, as well as common LoF variants in nonessential genes. We describe functional and evolutionary differences between LoF-tolerant and recessive disease genes and a method for using these differences to prioritize candidate genes found in clinical sequencing studies.


Nature | 2010

Transcriptome genetics using second generation sequencing in a Caucasian population.

Stephen B. Montgomery; Micha Sammeth; Maria Gutierrez-Arcelus; Radoslaw P. Lach; Catherine E. Ingle; James Nisbett; Roderic Guigo; Emmanouil T. Dermitzakis

Gene expression is an important phenotype that informs about genetic and environmental effects on cellular state. Many studies have previously identified genetic variants for gene expression phenotypes using custom and commercially available microarrays. Second generation sequencing technologies are now providing unprecedented access to the fine structure of the transcriptome. We have sequenced the mRNA fraction of the transcriptome in 60 extended HapMap individuals of European descent and have combined these data with genetic variants from the HapMap3 project. We have quantified exon abundance based on read depth and have also developed methods to quantify whole transcript abundance. We have found that approximately 10 million reads of sequencing can provide access to the same dynamic range as arrays with better quantification of alternative and highly abundant transcripts. Correlation with SNPs (small nucleotide polymorphisms) leads to a larger discovery of eQTLs (expression quantitative trait loci) than with arrays. We also detect a substantial number of variants that influence the structure of mature transcripts indicating variants responsible for alternative splicing. Finally, measures of allele-specific expression allowed the identification of rare eQTLs and allelic differences in transcript structure. This analysis shows that high throughput sequencing technologies reveal new properties of genetic effects on the transcriptome and allow the exploration of genetic effects in cellular processes.


Science | 2009

Common regulatory variation impacts gene expression in a cell type dependent manner

Antigone S. Dimas; Samuel Deutsch; Barbara E. Stranger; Stephen B. Montgomery; Christelle Borel; Homa Attar-Cohen; Catherine E. Ingle; Claude Beazley; Maria Gutierrez Arcelus; Magdalena Sekowska; Marilyne Gagnebin; James Nisbett; Panos Deloukas; Emmanouil T. Dermitzakis

Tissue-Specific Control The effect of genetic variation on gene expression and phenotype among individuals is largely unknown. Dimas et al. (p. 1246, published online 30 July 2009) show that in humans there are several genes whose allelic expression varies in a tissue-specific manner and are apparently controlled by cis elements. Up to 80% of variants seem to have tissue-specific functions when compared in fibroblasts, as well as B cells and T cells. This variation among regulatory variants correlated with transcript complexity, which suggests that some of the observed regulatory variation is due to genotype-specific use of transcripts and transcription start sites. Genetic variation in regulatory elements among humans affects gene expression in a tissue-specific manner. Studies correlating genetic variation to gene expression facilitate the interpretation of common human phenotypes and disease. As functional variants may be operating in a tissue-dependent manner, we performed gene expression profiling and association with genetic variants (single-nucleotide polymorphisms) on three cell types of 75 individuals. We detected cell type–specific genetic effects, with 69 to 80% of regulatory variants operating in a cell type–specific manner, and identified multiple expressive quantitative trait loci (eQTLs) per gene, unique or shared among cell types and positively correlated with the number of transcripts per gene. Cell type–specific eQTLs were found at larger distances from genes and at lower effect size, similar to known enhancers. These data suggest that the complete regulatory variant repertoire can only be uncovered in the context of cell-type specificity.


Nature Genetics | 2012

Mapping cis- and trans-regulatory effects across multiple tissues in twins

Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Alexandra C. Nica; Alfonso Buil; Sarah Keildson; Jordana T. Bell; Yang T-P.; Eshwar Meduri; Amy Barrett; James Nisbett; Magdalena Sekowska; Alicja Wilk; Shin S-Y.; Daniel Glass; Mary E. Travers; Josine Min; S. M. Ring; Karen M Ho; Gudmar Thorleifsson; A. P. S. Kong; Unnur Thorsteindottir; Chrysanthi Ainali; Antigone S. Dimas; Neelam Hassanali; Catherine E. Ingle; David Knowles; Maria Krestyaninova; Christopher E. Lowe; P. Di Meglio

Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.


PLOS Genetics | 2012

Patterns of cis regulatory variation in diverse human populations

Barbara E. Stranger; Stephen B. Montgomery; Antigone S. Dimas; Leopold Parts; Oliver Stegle; Catherine E. Ingle; Magda Sekowska; George Davey Smith; David E. Evans; Maria Gutierrez-Arcelus; Alkes L. Price; Towfique Raj; James Nisbett; Alexandra C. Nica; Claude Beazley; Richard Durbin; Panos Deloukas; Emmanouil T. Dermitzakis

The genetic basis of gene expression variation has long been studied with the aim to understand the landscape of regulatory variants, but also more recently to assist in the interpretation and elucidation of disease signals. To date, many studies have looked in specific tissues and population-based samples, but there has been limited assessment of the degree of inter-population variability in regulatory variation. We analyzed genome-wide gene expression in lymphoblastoid cell lines from a total of 726 individuals from 8 global populations from the HapMap3 project and correlated gene expression levels with HapMap3 SNPs located in cis to the genes. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We further dissect the specific functional pathways differentiated between populations. We also identify 5,691 expression quantitative trait loci (eQTLs) after controlling for both non-genetic factors and population admixture and observe that half of the cis-eQTLs are replicated in one or more of the populations. We highlight patterns of eQTL-sharing between populations, which are partially determined by population genetic relatedness, and discover significant sharing of eQTL effects between Asians, European-admixed, and African subpopulations. Specifically, we observe that both the effect size and the direction of effect for eQTLs are highly conserved across populations. We observe an increasing proximity of eQTLs toward the transcription start site as sharing of eQTLs among populations increases, highlighting that variants close to TSS have stronger effects and therefore are more likely to be detected across a wider panel of populations. Together these results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation and provide an estimate for the transferability of complex trait variants across populations.


PLOS Genetics | 2011

The architecture of gene regulatory variation across multiple human tissues: the MuTHER study.

Alexandra C. Nica; Leopold Parts; Daniel Glass; James Nisbet; Amy Barrett; Magdalena Sekowska; Mary E. Travers; Simon Potter; Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Veronique Bataille; Jordana T. Bell; Gabriela Surdulescu; Antigone S. Dimas; Catherine E. Ingle; Frank O. Nestle; Paola Di Meglio; Josine L. Min; Alicja Wilk; Christopher J. Hammond; Neelam Hassanali; Tsun-Po Yang; Stephen B. Montgomery; Steve O'Rahilly; Cecilia M. Lindgren; Krina T. Zondervan; Nicole Soranzo; Inês Barroso; Richard Durbin

While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design (Matched Co-Twin Analysis—MCTA) permits immediate replication of eQTLs using co-twins (93%–98%) and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%–20%) have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.


Bioinformatics | 2010

Genevar: A Database and Java Application for the Analysis and Visualization of SNP-Gene Associations in eQTL Studies

Tsun-Po Yang; Claude Beazley; Stephen B. Montgomery; Antigone S. Dimas; Maria Gutierrez-Arcelus; Barbara E. Stranger; Panos Deloukas; Emmanouil T. Dermitzakis

Summary: Genevar (GENe Expression VARiation) is a database and Java tool designed to integrate multiple datasets, and provides analysis and visualization of associations between sequence variation and gene expression. Genevar allows researchers to investigate expression quantitative trait loci (eQTL) associations within a gene locus of interest in real time. The database and application can be installed on a standard computer in database mode and, in addition, on a server to share discoveries among affiliations or the broader community over the Internet via web services protocols. Availability: http://www.sanger.ac.uk/resources/software/genevar Contact: [email protected]

Collaboration


Dive into the Stephen B. Montgomery's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexis Battle

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Xin Li

Stanford University

View shared research outputs
Top Co-Authors

Avatar

Steven J.M. Jones

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Obi L. Griffith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge